Тип шкалы измерения в статистической таблице. Моосмюллер Г., Ребик Н.Н


5.2. Типы статистических шкал

В эмпирическом исследовании могут встречаться, к примеру, следующие переменные (указано их наиболее вероятное кодирование):

Пол 1 = мужской
2 = женский
Семейное положение 1 = холост/не замужем
2 = женат/замужем
3 = вдовец/вдова
4 = разведен(а)
Курение 1 = некурящий
2 = изредка курящий
3 = интенсивно курящий
4 = очень интенсивно курящий
Месячный доход 1 = до 3000 DM
2 = 3001 - 5000 DM
3 = более 5000 DM
Коэффициент интеллекта (I.Q.)
Возраст (лет)

Рассмотрим сначала графу "Пол" . Мы видим, что назначение соответствия цифр 1 и 2 обоим полам абсолютно произвольно, их можно было поменять местами или обозначить другими цифрами. Мы, конечно, не имеем в виду, что женщины стоят на ступеньку ниже мужчин, или мужчины значат меньше, чем женщины. Следовательно, отдельным числам не соответствует никакою эмпирического значения. В этом случае говорят о переменных, относящихся к номинальной шкале . В нашем примере рассматривается переменная с номинальной шкалой, имеющая две категории. Такая переменная имеет еще одно название - дихотомическая .

Такая же ситуация и с переменной "Семейное положение" . Здесь также соответствие - между числами и категориями семейного положения не имеет никакого эмпирического значения. Но в отличии от Пола, эта переменная не является дихотомической - у нее четыре категории вместо двух. Возможности обработки переменных, относящихся к номинальной шкале очень ограничены. Собственно говоря, можно провести только частотный анализ таких переменных. К примеру, расчет среднего значения для переменной Семейное положение, совершенно бессмысленен. Переменные, относящиеся к номинальной шкале часто используются для группировки, с помощью которых совокупная выборка разбивается по категориям этих переменных. В частичных выборках проводятся одинаковые статистические тесты, результаты которых затем сравниваются друг с другом.

В качестве следующего примера рассмотрим переменную "Курение" . Здесь кодовым цифрам присваивается эмпирическое значение в том порядке, в котором они расположены в списке. Переменная Курение, в итоге, сортирована в порядке значимости снизу вверх: умеренный курильщик курит больше, нежели некурящий, а сильно курящий - больше, чем умеренный курильщик и т.д. Такие переменные, для которых используются численные значения, соответствующие постепенному изменению эмпирической значимости, относятся к порядковой шкале .

Однако эмпирическая значимость этих переменных не зависит от разницы между соседними численными значениями. Так, несмотря на то, что разница между значениями кодовых чисел для некурящего и изредка курящего и изредка курящего и интенсивно курящего в обоих случаях равна единице, нельзя утверждать, что фактическое различие между некурящим и изредка курящим и между изредка курящим и интенсивно курящим одинаково. Для этого данные понятия слишком расплывчаты.

К классическими примерами переменных с порядковой шкалой относятся также переменные, полученные в результате объединения величин в классы, как "Месячный доход" в нашем примере.

Кроме частотного анализа, переменные с порядковой шкалой допускают также вычисление определенных статистических характеристик, таких как медианы. В некоторых случаях возможно вычисление среднего значения. Если должна быть установлена связь (корреляция) с другими переменными такого рода, для этой цели можно использовать коэффициент ранговой корреляции .

Для сравнения различных выборок переменных, относящихся к порядковой шкале, могут применяться непараметрические тесты , формулы которых оперируют рангами.

Рассмотрим теперь "Коэффициент интеллекта (IQ) ". Не только его абсолютные значения отображают порядковое отношение между респондентами, но и разница между двумя значениями также имеет эмпирическую значимость. Например, если у Ганса IQ равен 80, у Фрица - 120 и у Отто - 160, можно сказать, что Фриц в сравнении с Гансом настолько же интеллектуальнее насколько Отто в сравнении с Фрицем (а именно - на 40 единиц IQ). Однако, основываясь только на том, что значение IQ у Ганса в два раза меньше, чем у Отто, исходя из определения IQ нельзя сделать вывод, что Отто вдвое умнее Ганса.

Такие переменные, у которых разность (интервал) между двумя значениями имеет эмпирическую значимость, относятся к интервальной шкале . Они могут обрабатываться любыми статистическим методами без ограничений. Так, к примеру, среднее значение является полноценным статистическим показателем для характеристики таких переменных.

Наконец, мы достигли наивысшей статистической шкалы, на которой эмпирическую значимость приобретает и отношение двух значений. Примером переменной, относящейся к такой шкале является "Возраст ": если Максу 30 лет, а Морицу 60, можно сказать, что Мориц вдвое старше Макса. Шкала, к которой относятся данные называется шкалой отношений . К этой шкале относятся все интервальные переменные, которые имеют абсолютную нулевую точку. Поэтому переменные относящиеся к интервальной шкале, как правило, имеют и шкалу отношений.

Подводя итоги, можно сказать, что существует четыре вида статистических шкал, на которых могут сравниваться численные значения:

На практике, в том числе в SPSS, различие между переменными, относящимися к интервальной шкале и шкале отношений обычно несущественно. То есть в дальнейшем практически всегда речь будет идти о переменных, относящихся к интервальной шкале .

794. Орлов А.И. Теория измерений как часть методов анализа данных: размышления над переводом статьи П.Ф. Веллемана и Л. Уилкинсона // Социология: методология, методы, математическое моделирование. 2012. № 35. С. 155-174.
А.И. Орлов

(Москва)
МЕСТО ТЕОРИИ ИЗМЕРЕНИЙ В МЕТОДАХ АНАЛИЗА ДАННЫХ 1


Согласно современной парадигме прикладной статистики, теория измерений является неотъемлемой частью методов анализа данных. По мнению П.Ф. Веллемана и Л. Уилкинсона , применение теории измерений «при выборе или для рекомендации тех или иных методов статистического анализа неуместно и зачастую приводит к ошибкам». В статье приведены краткие сведения о шкалах измерения и применении теории измерений при выборе средних величин с соответствии с шкалами измерения данных, а затем скрупулезно анализируются аргументы П.Ф. Веллемана и Л. Уилкинсона. Итог дискуссии: «теория измерений важна для интерпретации статистического анализа» . Дискуссия позволила уточнить ряд вопросов применения прикладной статистики (анализа данных): выявлена роль решаемой задачи и применяемой модели данных для установления типов шкал измерения этих данных; разделены области применения разведочного анализа и доказательной статистики.
Ключевые слова : теория измерений, анализ данных, прикладная статистика, шкалы измерения, допустимые преобразования, инвариантность выводов.
Методы анализа данных (другими словами, прикладная статистика, статистические методы) необходимы социологу для обработки результатов массовых обследований, а также для подведения итогов экспертных опросов . Эта научная область бурно развивается. Согласно новой парадигме прикладной статистики, теория измерений является неотъемлемой частью современных методов анализа данных . В наших учебниках (, и др.) рассказано о теории измерений и ее применении при выборе адекватных методов анализа данных.

Есть и другие мнения о целесообразности использования теории измерений при анализе социологических данных. Основная идея статьи П.Ф. Веллемана и Л. Уилкинсона выражена в ее названии. По их мнению, применение теории измерений «при выборе или для рекомендации тех или иных методов статистического анализа неуместно и зачастую приводит к ошибкам» .

Прежде чем разбирать аргументы П.Ф. Веллемана и Л. Уилкинсона, целесообразно привести краткие сведения о предмете дискуссии, в частности, определить используемые нами термины и сформулировать основные положения в стиле отечественной вероятностно-статистической школы, основоположником которой является А.Н. Колмогоров, превративший теорию вероятностей и математическую статистику в раздел математики. При этом уточняем изложение в и описываем применение теории измерений в теории средних величин, позволившее создать стройную и окончательную систему средних.
Основы теории измерений
Теория измерений исходит из того, что арифметические действия с используемыми в практической работе числами не всегда имеют смысл. Например, зачем складывать или умножать номера телефонов? Далее, не всегда выполнены привычные арифметические соотношения. Например, сумма знаний двух двоечников не равна знаниям «хорошиста», т.е. для оценок знаний 2+2 не равно 4. Приведенные примеры показывают, что практика использования чисел для описания результатов наблюдений (измерений, испытаний, анализов, опытов) заслуживает методологического анализа.

Основные шкалы измерения. Наиболее простой способ использования чисел - применение их для различения объектов. Например, телефонные номера нужны для того, чтобы отличать одного абонента от другого. При таком способе измерения используется только одно отношение между числами - равенство (два объекта описываются либо равными числами, либо различными). Соответствующую шкалу измерения называют шкалой наименований (при использовании термина на основе латыни - номинальной шкалой; иногда называют также классификационной шкалой). В этой шкале измерены штрих-коды товаров, номера паспортов, ИНН (индивидуальные номера налогоплательщиков) и многие иные величины, выраженные числами. С прикладной точки зрения шкала измерения - это способ приписывания чисел рассматриваемым объектам, соответствующий имеющимся между объектами отношениям.

Отметим, что числа могут быть приписаны объектам разными способами. Переход от одного способа к другому наблюдаем при замене паспортов или телефонных номеров. Каковы свойства допустимых преобразований? Для шкалы наименований естественно потребовать только взаимной однозначности. Другими словами, применив к результатам измерений взаимно-однозначное преобразование, получаем новую шкалу, столь же хорошо описывающую систему исходных объектов, как и прежняя шкала.

Шесть основных типов шкал измерения описаны в табл.1.
Таблица 1. Основные шкалы измерения.


Тип шкалы

Определение шкалы

Примеры

Группа допустимых преобразований

Шкалы качественных признаков

Наименований

Числа используют для различения объектов

Номера телефонов, паспортов, ИНН, штрих-коды

Все взаимно-однозначные преобразования

Порядковая

Числа используют для упорядочения объектов

Оценки экспертов, баллы ветров, отметки в школе, полезность, номера домов

Все строго возрастающие преобразования

Шкалы количественных признаков

(описываются началом отсчета и единицей измерения)



Интервалов

Начало отсчета и единица измерения произвольны

Потенциальная энергия, положение точки, температура по шкалам Цельсия и Фаренгейта

Все линейные преобразования φ(x ) = ax + b ,

a и b произвольны, а >0


Отношений

Начало отсчета задано, единица измерения произвольна

Масса, длина, мощность, напряжение, сопротивление, температура по Кельвину, цены

Все подобные преобразования φ(x ) = ax ,

а произвольно, а >0


Разностей

Начало отсчета произвольно, единица измерения задана

Время

Все преобразования сдвига φ(x ) = x + b ,

b произвольно


Абсолютная

Начало отсчета и единица измерения заданы

Число людей в данном помещении

Только тождественное преобразование φ(x ) = x

Кроме перечисленных в табл.1, используют и иные типы шкал . Отметим, что в табл.1 выражение «единица измерения произвольна» означает, что она может быть выбрана по соглашению специалистов, но не вытекает из каких-либо фундаментальных соотношений. При измерении времени естественная единица измерения задается периодами обращения небесных тел. Начало отсчета при измерении длины задается длиной отрезка, у которого начало и конец совпадают, и т.д.

В настоящее время считается необходимым перед применением тех или иных алгоритмов анализа данных установить, в шкалах каких типов измерены рассматриваемые величины. При этом с течением времени тип шкалы измерения определенной величины может меняться. Например, температура сначала измерялась в порядковой шкале (теплее - холоднее). После изобретения термометров она стала измеряться в шкале интервалов (по шкалам Цельсия, Фаренгейта или Реомюра). Температура С по шкале Цельсия выражается через температуру F по шкале Фаренгейта с помощью линейного преобразования

С открытием абсолютного нуля температур стал возможным переход к шкале отношений (шкала Кельвина).

Требование инвариантности (адекватности) выводов. Выяснение типов используемых шкал необходимо для адекватного выбора методов анализа данных. Основополагающим требованием является независимость выводов от того, какой именно шкалой измерения воспользовался исследователь (среди всех шкал, переходящих друг в друга при допустимых преобразованиях). Например, если речь о длинах, то выводы не должны зависеть от того, измерены ли длины в метрах, аршинах, саженях, футах или дюймах.

Другими словами, выводы должны быть инвариантны относительно группы допустимых преобразований шкалы измерения. Только тогда их можно назвать адекватными, т.е. избавленными от субъективизма исследователя, выбирающего определенную шкалу из множества шкал заданного типа, связанных допустимыми преобразованиями.

Требование инвариантности выводов накладывает ограничения на множество возможных алгоритмов анализа данных. В качестве примера рассмотрим порядковую шкалу. Одни алгоритмы анализа данных позволяют получать адекватные выводы, другие - нет. Например, в задаче проверки однородности двух независимых выборок алгоритмы ранговой статистики (т.е. использующие только ранги результатов измерений) дают адекватные выводы, а статистики Крамера-Уэлча и Стьюдента - нет. Значит, для обработки данных, измеренных в порядковой шкале, критерии Смирнова и Вилкоксона можно использовать, а критерии Крамера-Уэлча и Стьюдента - нет.
Выбор средних величин в соответствии со шкалами измерения
Требование инвариантности является достаточно сильным. Из многих алгоритмов анализа статистических данных ему удовлетворяют лишь некоторые. Покажем это на примере сравнения средних величин.

Средние по Коши. Среди всех методов анализа данных важное место занимают алгоритмы усреднения. Еще в 1970-х годах удалось полностью выяснить, какими видами средних можно пользоваться при анализе данных, измеренных в тех или иных шкалах.

Пусть Х 1 , Х 2 ,…, Х n - выборка объема n . Наиболее общее понятие средней величины введено французским математиком первой половины ХIХ в. О. Коши. Средней величиной (по Коши) является любая функция f (X 1 , X 2 ,...,X n ) такая, что при всех возможных значениях аргументов значение этой функции не меньше, чем минимальное из чисел X 1 , X 2 ,...,X n , и не больше, чем максимальное из этих чисел. Средними по Коши являются среднее арифметическое, медиана, мода, среднее геометрическое, среднее гармоническое, среднее квадратическое.

Средние величины используются обычно для того, чтобы заменить совокупность чисел (выборку) одним числом, а затем сравнивать совокупности с помощью средних. Пусть, например, Y 1 , Y 2 ,...,Y n - совокупность оценок экспертов (или респондентов), «выставленных» одному объекту экспертизы, Z 1 , Z 2 ,...,Z n - второму. Как сравнивать эти совокупности? Самый простой способ - по средним значениям.

При допустимом преобразовании шкалы значение средней величины, очевидно, меняется. Но выводы о том, для какой совокупности среднее больше, а для какой - меньше, не должны меняться (в соответствии с требованием инвариантности выводов, принятом как основное требование в теории измерений). Сформулируем соответствующую математическую задачу поиска вида средних величин, результат сравнения которых устойчив относительно допустимых преобразований шкалы.

Пусть f (X 1 , X 2 ,...,X n ) - среднее по Коши. Пусть среднее по первой совокупности меньше среднего по второй совокупности:

f (Y 1 , Y 2 ,...,Y n ) (Z 1 , Z 2 ,...,Z n ).

Тогда согласно теории измерений для устойчивости результата сравнения средних необходимо, чтобы для любого допустимого преобразования g (из группы допустимых преобразований в соответствующей шкале) было справедливо также неравенство

f (g (Y 1), g (Y 2),...,g (Y n )) (Z 1), g (Z 2 ),...,g(Z n )),

т.е. среднее преобразованных значений из первой совокупности было меньше среднего преобразованных значений для второй совокупности. Причем сформулированное условие должно быть выполнено для любых двух совокупностей Y 1 , Y 2 ,...,Y n и Z 1 , Z 2 ,...,Z n. И, напомним, для любого допустимого преобразования. Средние величины, удовлетворяющие сформулированному условию, назовем допустимыми (в соответствующей шкале). Согласно теории измерений только допустимыми средними величинами можно пользоваться при анализе мнений экспертов и иных данных, измеренных в рассматриваемой шкале.

С помощью математической теории, развитой в монографии , удается описать вид допустимых средних величин в основных шкалах.

Средние величины в порядковой шкале. Рассмотрим обработку, для определенности, мнений экспертов, измеренных в порядковой шкале. Справедливо следующее утверждение.

Теорема 1. Из всех средних по Коши допустимыми средними в порядковой шкале являются только члены вариационного ряда (порядковые статистики).

Теорема 1, впервые полученная в статье , справедлива при условии, что среднее f (X 1 , X 2 ,...,X n ) является непрерывной (по совокупности переменных) и симметрической функцией. Последнее означает, что при перестановке аргументов значение функции f (X 1 , X 2 ,...,X n ) не меняется. Это условие является вполне естественным, ибо среднюю величину находим для совокупности (множества) чисел, а не для последовательности . Множество не меняется в зависимости от того, в какой последовательности мы перечисляем его элементы.

Согласно теореме 1 в качестве среднего для данных, измеренных в порядковой шкале, можно использовать, в частности, медиану (при нечетном объеме выборки). При четном же объеме следует применять один из двух центральных членов вариационного ряда - как их иногда называют, левую медиану или правую медиану. Моду тоже можно использовать - она всегда является членом вариационного ряда. Можно применять выборочные квартили, минимум и максимум, децили и т.п. Но никогда нельзя рассчитывать среднее арифметическое, среднее геометрическое и т.д.

Средние по Колмогорову. Естественная система аксиом (требований к средним величинам) приводит к так называемым ассоциативным средним. Их общий вид нашел в 1930 г. А.Н. Колмогоров . Теперь их называют «средними по Колмогорову».

Для чисел X 1 , X 2 ,...,X n средним по Колмогорову является

G {(F (X 1) + F (X 2) +...+ F (X n ))/n },

где F - строго монотонная функция (т.е. строго возрастающая или строго убывающая), G - функция, обратная к F . Среди средних по Колмогорову - много хорошо известных персонажей. Так, если F (x ) = x , то среднее по Колмогорову - это среднее арифметическое, если F (x ) = ln x , то среднее геометрическое, если F (x ) = 1/x , то среднее гармоническое, если F (x ) = x , то среднее квадратическое, и т.д. (в последних трех случаях усредняются положительные величины).

Среднее по Колмогорову - частный случай среднего по Коши. С другой стороны, такие популярные средние, как медиана и мода, нельзя представить в виде средних по Колмогорову. В статье впервые доказаны следующие утверждения.

Теорема 2. В шкале интервалов из всех средних по Колмогорову допустимым является только среднее арифметическое.

Таким образом, среднее геометрическое или среднее квадратическое температур (в шкале Цельсия), потенциальных энергий или координат точек не имеют смысла. В качестве среднего надо применять среднее арифметическое. А также можно использовать медиану или моду.

Теорема 3. В шкале отношений из всех средних по Колмогорову допустимыми являются только степенные средние с и среднее геометрическое.

Есть ли средние по Колмогорову, которыми нельзя пользоваться в шкале отношений? Конечно, есть. Например, с F (x ) = e 2 x .

Замечание 1. Среднее геометрическое является пределом степенных средних при .

Замечание 2. Теоремы 1 и 2 справедливы при выполнении некоторых внутриматематических условий регулярности. Доказательства теорем 1-3 приведены в монографии . Перенос на случай взвешенных средних дан в статье .

Аналогично средним величинам могут быть изучены и другие статистические характеристики - показатели разброса, связи, расстояния и др. (см., например, ). Нетрудно показать, например, что коэффициент корреляции не меняется при любом допустимом преобразовании в шкале интервалов, как и отношение дисперсий. Дисперсия не меняется в шкале разностей, коэффициент вариации - в шкале отношений, и т.д. В статье рассмотрены дальнейшие результаты о средних величинах.

Согласно рассматриваемому подходу сначала надо установить, в каких шкалах измерены социологические данные, а затем использовать только инвариантные относительно этих шкал алгоритмы обработки данных.

В статье теория измерений именуется «ограничения Стивенса», порядковая шкала названа ординальной, шкала отношений – относительной, нет понятия «группа допустимых преобразований», и т.п. Будем пользоваться устоявшимися в прикладной статистике терминами . В целом же позиция сторонников использования теории измерений при анализе данных описана в верно.

На русском языке имеется достаточно много публикаций по теории измерений, написанных строго, квалифицированными авторами. Поскольку мы не ставим целью дать здесь обзор по теории измерений, отошлем читателей к работам и имеющимся там ссылкам на литературные источники.
Первые размышления над переводом статьи П.Ф. Веллемана и Л. Уилкинсона
Эта статья написана в виде обзора различных публикаций, изложение идет на словесном уровне, строгие определения, формулы, таблицы, примеры почти отсутствуют. Поэтому приходится додумывать за авторов, что они хотели сказать. Не всегда удается придать точный смысл их высказываниям.

На с.173 выделено три направления критики:

1. Требование инвариантности выводов относительно допустимых преобразований шкал измерения «представляется опасным для анализа данных».

2. Подход на основе теории измерений «слишком строг, чтобы его можно было применять для реальных данных».

3. Этот подход «часто ведет к понижению уровня данных через их преобразования в ранги и последующее ненужное обращение к непараметрическим методам».

Начнем с разбора в общих терминах этих трех направлений критики.

1. Опасным для получения обоснованных выводов является, наоборот, отказ от требования инвариантности. Разве можно опираться на выводы, которые меняются при допустимом преобразовании шкалы?

Конечно, при первоначальном разведочном анализе данных можно их «прогнать» через весь арсенал имеющихся в программном продукте методов обработки – вдруг удастся что-нибудь интересное заметить? Полученные нестрогими методами «находки» необходимо затем проверить с помощью обоснованных процедур анализа данных .

Практика зачастую вынуждает использовать соображения теории измерений. Так, при проведении нашим научным коллективом опросов летного состава авиакомпании «Волга-Днепр» выяснилось, что пилотам легче сказать, какое событие встречается чаще, а какое реже, чем оценить число осуществлений событий на 1000 полетов. Проводить оценивание в абсолютной шкале (оценивать вероятности событий) пилоты не берутся, в то время как задачи сравнения событий по частоте встречаемости или оценки их по встречаемости условными баллами (значениями качественных признаков) не вызывают сложностей. Таким образом, полученные при опросах пилотов оценки измерены в порядковых шкалах.

2. При практической работе обычно вполне ясно, в каких шкалах измерены данные. Если попытаться навязать респондентам неправильную шкалу, их ответы будут произвольными, не отражающими истинных мнений, или же они могут попросту отказаться давать ответы, как это было в описанных выше опросах летного состава авиакомпании «Волга-Днепр».

Можно признать, что в отдельных редких случаях определение типа шкалы измерения данных требует специальных исследований.

3. Уже ко времени появления статьи П.Ф. Веллемана и Л. Уилкинсона (1993 г.) с помощью непараметрических методов можно было решать все те задачи анализа данных, для которых всё еще в отдельных работах используются параметрические методы. Согласно современной парадигме прикладной статистики , вместо параметрических методов, характерных для устаревшей парадигмы середины ХХ в., следует применять непараметрические методы.

Согласно современным взглядам, параметрические методы – это методы, основанные на вероятностно-статистических моделях, в которых распределения случайных величин принадлежат тому или иному из параметрических семейств – семейству нормальных, логарифмически-нормальных, гамма-распределений или иных, входящих в четырехпараметрическое семейство К. Пирсона, введенное им в начале ХХ в. Непараметрические методы исходят из распределений произвольного вида. «Преобразование в ранги» не обязательно при применении непараметрических методов. Оно соответствует случаю, когда данные измерены в порядковой шкале.

Как показали многочисленные исследования, почти все распределения реальных данных не принадлежат ни одному из известных параметрических семейств . Боязнь непараметрических методов не имеет рационального обоснования, она порождена предрассудками устаревшей парадигмы прикладной статистики середины ХХ в.

От анализа общих возражений против применения теории измерений при анализе социологических данных перейдем к рассмотрению конкретных примеров, приведенных П.Ф. Веллеманом и Л. Уилкинсоном. Чтобы не раздувать объем настоящей статьи, не будем повторять формулировки примеров, предполагая, что читатели имеют перед собой перевод их исходной статьи .

В критике Лорда выделим несколько составляющих. Во-первых, выбор типа шкалы может быть связан с решаемой задачей. Так, номера договоров предприятия служат прежде всего для того, чтобы различать эти договора (и связанные с ними действия), т.е. естественно принять, что они измерены в шкале наименований. Однако эти номера возрастают с течением времени (в соответствии с датами заключения договоров), поэтому в некоторых задачах принятия управленческих решений естественно считать, что они измерены в порядковой шкале. Во-вторых, при обработке порядковых данных с помощью алгоритмов, не являющимися инвариантными в порядковой шкале, может создаться впечатление, что получены обоснованные выводы. Лорд рассказывает о применении неравенства Чебышева (можно было использовать критерий Крамера-Уэлча ). Однако при применении той же процедуры анализа к данным, подвергнутым некоторому допустимому преобразованию в порядковой шкале, выводы будут прямо противоположными. Для обнаружения различия между двумя независимыми выборками следовало применить непараметрические критерии однородности, например, критерий Вилкоксона .

Бейкер, Хардик и Петринович, Боргатта и Боршштейн не хотят применять непараметрические методы, объяснений нет. Веллеман и Уилкинсон напрасно критикуют их за нежелание «связываться с проблемой робастности» . Робастные методы, т.е. устойчивые к малым отклонениям функций распределения данных, не позволяют справиться с произвольным допустимыми преобразованиями. Если же от робастности перейти к более общей системе понятий – к общей схеме устойчивости, то оказывается, что устойчивые к допустимым преобразованиям шкал методы анализа данных – это ранговые методы как частный случай непараметрических .

Гутман предлагает использовать «функцию потерь, выбранную для проверки качества модели» . Действительно, если задана функция потерь, то нет необходимости привлекать теорию измерений. Проблема в том, чтобы выбрать эту функцию, причем обоснованно. Ни с одним таким практиком за более чем 40 лет консультирования в области анализа данных мне встретиться не довелось. Тот, кто сможет выбрать функцию потерь, уже не практик, а квалифицированный специалист в области математической статистики.

По мнению Тьюки, «какое знание не основано на некоторой приблизительности» . Действительно, при первоначальном разведочном анализе одного взгляда на данные специалисту бывает достаточно для формулировки вывода. Однако и практики, и теоретики настаивают на том, чтобы интуитивные выводы были обоснованы строгими рассуждениями.
Дискуссия о статистиках и шкальных типах
Названный так раздел начинается словами: «Статистики отвергли запрет на методы, основанный на ограничениях, связанных с допустимыми преобразованиями». Это совершенно неверно. Статистики приняли этот запрет (см. обсуждения в ). Особенно ясно это сейчас, через 20 лет после написания статьи . В настоящее время сомнения остаются у некоторых из тех, кто не является профессионалом в области анализа данных, к тому же склонен к принятию простых решений и не хочет утруждать себя изучением теории измерений и непараметрической статистики. Такой настрой практиков вполне естественен и разумен, но не плодотворен. Современная прикладная статистика не является простой, для ее усвоения нужно приложить усилия и затратить время.

Приходится констатировать, что в статью включено большое количество категоричных утверждений, не подтвержденных аргументами и противоречащих практике анализа данных. На с.176 сказано: «Ключевой аргумент против использования предписания статистик на основе шкального типа гласит: это не работает!». Еще как работает – и на практике, и при развитии теории (в начальных разделах настоящей статьи показано, что теория измерений позволила придать теории средних законченный вид). На с.177 говорится, что «опыт показывает, что применение запрещенных статистик к данным приводит к научно значимым результатам, важным при принятии решений и ценным для дальнейших исследований». Примеров нет. Видимо, потому, что это утверждение неверно.

В часто используются термины без определений. Отечественного читателя может поразить заявление о «фундаментальной разнице между математикой и наукой» (с.176). В нашей стране согласно традиции и нормативным документам Минобразования и ВАК математика – одна из наук. Мы считаем, что статистические методы и анализ данных – это одно и то же. Именно поэтому наша крайняя книга называется «Статистические методы анализа данных» . Конечно, можно определить термины так, что математика не будет наукой, а анализ данных станет отличаться от математической статистики. Дискуссия о терминах – увлекательное занятие. Только в одной брошюре приведено около 200 определений термина «статистика». Однако ясно, что использование терминов без определений, как это сделано в , может только запутать читателя.
Различные виды данных
Нельзя не согласиться с Веллеманом и Уилкинсоном в том, что данные – это не всегда числа . Элементами выборок могут быть вектора, функции, различные виды объектов нечисловой природы – бинарные отношения, множества, нечеткие множества, интервалы и др. . Тем более это касается результатов расчетов, таких, как доли или набор точек на плоскости, полученных в результате многомерного шкалирования. Обратите внимание: при рассказе о применении теории измерений при анализе данных в начале этой статьи шла речь об инвариантности выводов, сделанных на основе обработки наборов чисел. Следовательно, теория измерений используется не во всех разделах прикладной статистики, а лишь при статистическом анализе числовых величин . Это замечание понадобится при дальнейшем разборе статьи .

Необходимо всегда различать разведочный статистический анализ, нацеленный на «интуитивное проникновение в закономерности массива данных» , и доказательную статистику, основанную на строгих рассуждениях. Именно к разведочному анализу относятся методы преобразования данных и многомерного шкалирования . При разведочном анализе соблюдать требования теории измерений не обязательно, а в доказательной статистике – наоборот.

В разделе «Хороший анализ данных не основан на допущениях о типе данных» Веллеман и Уилкинсон справедливо обращают внимание на важность правильного выбора статистической модели. В следующем разделе «Стивенсовские категории не описывают фиксированных свойств данных» речь фактически идет о том же: в ряде ситуаций «шкальный тип зависит от интерпретации данных или от наличия дополнительной информации» . Это утверждение совершенно верно, набор чисел сам по себе не дает возможности обосновать тип шкалы. Результат измерения равен 2911397 – какая шкала? Если это число из бухгалтерского отчета, то шкала отношений (переход от одной валюты к другой – подобное преобразование). Если же это число – из телефонного справочника, то номер телефона измерен в шкале наименований. На эту тему мы говорили ранее в связи с разбором работы Лорда . Итак, весьма важен выбор статистической модели, им определяются шкалы измерения данных.

В разделе «Категории Стивенса недостаточны для описания шкал данных» рассматриваются «многомерные шкалы». Что это такое – неясно, так как определений нет. Однако квазипрактический пример, заданный табл.1, достаточно понятен. Поскольку я пять лет проработал в медицинских учреждениях (в «кремлевской больнице» и в НИИ профессиональных заболеваний и гигиены труда АМН СССР), то отмечу, что число имеющихся у пациента симптомов нельзя рассматривать как показатель тяжести заболевания, поскольку подобное рассмотрение предполагает, что все симптомы равноценны по вкладу в тяжесть заболевания. Такого в медицине не бывает.

О чем идет речь в абзаце, посвященном работе Андерсона , остается неясным, поскольку определений используемых понятий нет.
Робастность, шкалы и анализ данных
В разделе «Статистические процедуры не могут классифицироваться по критериям Стивенса» Веллеман и Уилкинсон обсуждают обратную задачу (в терминологии ), в которой для заданной процедуры анализа данных требуется установить, в каких шкалах эта процедура дает инвариантные выводы. Действительно, нами доказано, что вывод о сравнении рассчитанных по двум выборкам значений линейной функции от порядковых статистик, заданной формулой (5) на с.185 , инвариантен в порядковой шкале, если только один весовой коэффициент отличен от 0 (см. и теорему 1 в начале статьи), и в шкале интервалов (и в шкалах с более узкими группами преобразований – отношений, разностей, абсолютной), если по крайней мере два весовых коэффициента отличны от 0 (см. ). Остальной текст этого раздела статьи не поддается интерпретации в строгих терминах. Отметим только, что рассматривается иная задача, чем раньше, - увязка процедур расчетов со шкалами измерения, а не установление типа шкалы измерения исходных данных.

В разделе «Шкальные типы – не точные категории» в очередной раз бездоказательно утверждается, что «реальные данные не удовлетворяют требованиям шкальных типов». Вместе с тем правильно отмечено, что при сомнениях «следует осуществить понижение уровня» шкалы, например, с интервальной до порядковой. В задаче, рассмотренной Тьюки в 1961 г., была бы полезна статистика интервальных данных, развиваемая с начала 1980-х годов .

В разделе «Шкалы и анализ данных» рассуждения построены на смешении разведочного статистического анализа, при котором можно не обращать внимание на шкалы, в которых измерены данные, и анализа данных на стадии получения строгих выводов, немыслимых без обращения к теории измерений. Странно, что Веллеман и Уилкинсон считают «хорошим» только разведочный анализ. Фраза: «Хороший анализ данных редко следует формальной парадигме проверки гипотезы» демонстрирует их нигилизм по отношению к математической статистике, который никак нельзя оправдать.

В разделе «Осмысленность» термин, давший название разделу, так и остался без определения. Как справедливо отмечают Веллеман и Уилкинсон, согласно теории измерений осмысленность – это то, что сохраняется при допустимых преобразованиях. Такое определение им не нравится, но дать другое они не могут, занимаясь общими рассуждениями о праве на ошибку. Странно читать такое: «Если бы наука была ограничена доказуемо осмысленными суждениями, она не смогла бы развиваться». Математика же успешно развивается!

Раздел «Роль типов данных» начинается неожиданно – с признания важности теории измерений: «Были бы ошибкой полагать, что типы данных не имеют значения… Понятие типа шкалы важно, а терминология Стивенса (т.е. теории измерений - А.О.) зачастую бывает удобна». Дальнейшие рассуждения снова посвящены констатации того, что, в нашей терминологии, тип шкалы определяется не самими данными, а моделью, соответствующей решаемой задаче (см. выше интерпретацию числа 2911397 как результата измерений в шкале отношений или в порядковой шкале в зависимости от постановки задачи). Вторая идея, которая также уже встречалась, - упор на разведочный анализ и умаление роли доказательной статистики.
Заключение
Раздел «Заключение» статьи написан взвешенно, высказанные в нем положения в целом справедливы. Как уже говорилось, нельзя считать, «что тип шкалы как бы самоочевиден и не зависит от того, какой вопрос ставит исследователь перед своими данными». За двадцать лет после написания статьи стало ясно, что после постановки вопроса исследователь должен описать модель анализа данных, обычно вероятностно-статистическую, включающую выбор типа шкал измерения данных, а затем в рамках этой модели разработать метод решения задачи или выбрать его из уже имеющихся .

Совершенно верно, что «статистическое программное обеспечение, способствующее любому анализу для любых данных, допускает и безответственный анализ». Об этом предупреждал В.В. Налимов более 40 лет назад . Он имел в виду прежде всего склонность к проведению расчетов без знакомства с сутью применяемых методов.

Анализ статьи закончен.

Подводя итоги настоящей статьи, необходимо констатировать пользу от сопоставления подходов теории измерений и критических замечаний по ее поводу, собранных в статье Веллемана и Уилкинсона . Дискуссия позволила уточнить ряд вопросов применения прикладной статистики (анализа данных). Прежде всего, выявлена роль решаемой задачи и применяемой модели данных для установления типов шкал измерения этих данных, разделены области применения разведочного анализа и доказательной статистики. Подтвердилась справедливость пословицы: «В споре рождается истина».


ЛИТЕРАТУРА
1. Орлов А.И. Статистические методы в российской социологии (тридцать лет спустя) // Социология: методология, методы, математические модели. 2005. № 20. С.32-53.

2. Орлов А.И. Новая парадигма прикладной статистики // Заводская лаборатория. 2012. Том 78. №1, часть I. С.87-93.

3. Орлов А.И. Прикладная статистика. Учебник. - М.: Экзамен, 2006. - 672 с.

4. Орлов А.И. Организационно-экономическое моделирование: учебник: в 3 ч. Часть 1: Нечисловая статистика. – М.: Изд-во МГТУ им. Н.Э. Баумана. – 2009. – 541 с.

5. Веллеман П.Ф., Уилкинсон Л. Типология номинальных, ординальных, интервальных и относительных шкал вводит в заблуждение // Социология: методология, методы, математическое моделирование. 2011. № 33. С.166 – 193.

6. Толстова Ю.Н. Измерения в социологии. - М.: Инфра-М, 1998. - 352 с.

7. Орлов А.И. Устойчивость в социально-экономических моделях. - М.: Наука, 1979. - 296 с.

8. Орлов А.И. Допустимые средние в некоторых задачах экспертных оценок и агрегирования показателей качества. // Многомерный статистический анализ в социально-экономических исследованиях. - М.: Наука, 1974. С. 388-393.

9. Колмогоров А.Н. Об определении среднего // Избр. труды. Математика и механика. М.: Наука, 1985. С. 136–138.

10. Орлов А.И. Допустимые преобразования в задаче сравнения средних. Пси-постоянные статистики. // Алгоритмы многомерного статистического анализа и их применения. - М.: Изд-во ЦЭМИ АН СССР, 1975. С.121-127.

11. Орлов А.И. Связь между средними величинами и допустимыми преобразованиями шкалы // Математические заметки. 1981. Т. 30. №4. С. 561–568.

12. Барский Б.В., Соколов М.В. Средние величины, инвариантные относительно допустимых преобразований шкалы измерения // Заводская лаборатория. 2006. Том 72. №1. С.59-66.

13. Орлов А.И. Организационно-экономическое моделирование: учебник: в 3 ч. Ч.3. Статистические методы анализа данных. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2012. - 624 с.

14. Никитина Е.П., Фрейдлина В.Д., Ярхо А.В. Коллекция определений термина «статистика». – М.: МГУ, 1972. – 46 с.

15. Налимов В.В. О преподавании математики экспериментаторам // О преподавании математической статистики экспериментаторам. Препринт Межфакультетской лаборатории статистических методов №17. – М.: Изд-во МГУ им. М.В. Ломоносова, 1971. – С.5-39.

1Александр Иванович Орлов, профессор, доктор экономических наук, доктор технических наук, кандидат физико-математических наук, директор Института высоких статистических технологий и эконометрики МГТУ им. Н.Э. Баумана, профессор МФТИ, советник президента группы авиакомпаний «Волга-Днепр», президент Российской ассоциации статистических методов. E-mail: prof - orlov @ mail . ru .

Работа выполнена при финансовой поддержке Министерства образования и науки РФ в рамках Постановления Правительства РФ № 218.

Грамотное применение статистических методов обработки данных во многом зависит от четкого понимания исследователем того, в какой статистической шкале они представлены. Непонимание этого может привести к тому, что исследователь получит результаты, которые не отражают действительное положение вещей и сделает неправильные выводы. Именно поэтому понимание того, в какой шкале представлены статистические данные является одним из необходимых условий успешной и грамотной статистической обработки.

Итак, приступим к тому, чтобы разобраться, что же такое статистические шкалы.

Шкала (от лат. «скале» — лестница) – элемент счетной системы, посредством которого происходит отнесение исследуемого объекта к определенной группе объектов.

Статистические шкалы можно разделить на качественные и количественные. К качественным шкалам относится номинальная и порядковая шкалы. К количественным – интервальная шкала и шкала отношений.

Номинальная шкала – качественная шкала. Относится к самому элементарному типу измерения. В ней каждому оцениваемому объекту приписывается наименование или число.

Пример 1: Признак – пол. Цифрой «0» обозначаем женщин, цифрой «1» — мужчин. Очевидно, что расчет среднего арифметического не иимеет смысла.

Пример 2: Признак — Цвет волос: Цифрой «1» обозначаем брюнетов, цифрой «2» — шатенов, цифрой «3» – блондинов, цифрой «4» – людей, имеющих рыжий цвет волос.

Пример 3: Номера на футболках спортсменов.

Для области физической культуры и спорта использование номинальной шкалы очень важно, так как очень часто используется метод анкетного опроса . При этом результаты представлены в виде таблицы, в которой представлена абсолютная частота ответов на тот или иной вопрос (табл. 1).

Таблица 1

Оценка мужчинами и женщинами своего психического состояния

Психическое состояние Мужчины Женщины Всего
Крайне неустойчивое 3 16 19
Неустойчивое 22 18 40
Устойчивое 32 9 41
Очень устойчивое 5 1 6
Всего 62 44 100

Порядковая шкала (ранговая) – качественная шкала, использующая свойство чисел отражать отношение «больше – меньше».

В порядковой шкале нельзя сказать насколько или во сколько одно значение больше другого, но можно сказать какое больше, какое меньше. Очень часто статистические данные, представленные в порядковой шкале, измеряются в баллах.

Интервальная шкала – количественная шкала. В этой шкале устанавливается единица измерения.

В интервальной шкале, например, измеряется температура (по Цельсию или по Фаренгейту).

Шкала отношений. Для признаков, измеренных в шкале отношений можно дополнительно сказать: во сколько одно значение больше другого. Шкала отношений в отличие от интервальной шкалы обладает точкой нулевого отсчета.

Примерами статистических данных, представленных в шкале отношений являются признаки: рост, вес, температура по Кельвину.

Более подробное эта тема рассмотрена в литературе, ссылки на которую приведены ниже.

ЛИТЕРАТУРА

  1. Барникова, И.Э. / И.Э. Барникова; А.В. Самсонова; Национальный государственный университет физической культуры, спорта и здоровья им. П.Ф. Лесгафта, Санкт–Петербург. – СПб.: [Б.и.], 2017. – 103 с.
  2. Гласс Дж., Стэнли Дж. Статистические методы в педагогике и психологии. М.: Прогресс. 1976.- 495 с.

При статистическом исследованиисоциально-экономических процессов мы встречаемся с двумя типами данных: пространственные данные (cross-sectional data ) и временные ряды (time-series data ).

Примером пространственных данных является, например, набор сведений (объем производства, количество работников, доход и др.) по разным фирмам в один и тот же момент времени (пространственный срез). Пространственные данные часто используются для построения моделей классификации, регрессионных моделей.

Примерами временных данных могут служить ежеквартальные данные по инфляции, средней заработной плате, национальному доходу за последние годы, ежедневный курс доллара США на ММВБ и т.п. Отличительной чертой временных данных является то, что они естественным образом упорядочены во времени. Часто наблюдения в близкие моменты времени бывают зависимыми.

Наиболее информативными видами представления данных являются временные ряды , многоугольники и гистограммы распределения (частотные и кумулятивные ), диаграммы (подробный анализ видов представления данных будет представлен в выпуске 2 данного тома).

Вид представления данных определяется типом шкалы измерения. Различают четыре основные вида данных, отличающихся по тому, как наблюдаемый объект измеряется или описывается (табл. 2.1).

Таблица 2.1

Основные виды данных

Номинальная шкала (шкала наименований, классификационная шкала) является наиболее «слабой» качественной шкалой, по которой объектам дается некоторый признак. Этот тип шкал соответствует простейшему виду измерения, при котором шкальные значения используются лишь как имена объектов. Единственная цель таких измерений - выявление различий между объектами разных классов. Однако не следует пренебрегать значением этих имен; так, одной из задач кластерного анализа является назначение удачных названий выявленных групп близких по совокупности свойств объектов.

Шкала называется ранговой (шкала порядка), если множеству измеряемых объектов можно присвоить монотонно возрастающие шкальные значения. Тем самым допускается не только номинальное различение объектов, но и их упорядочение по измеряемым свойствам. Таковы балльные, рейтинговые оценки.

Измерение в шкале порядка может применяться в различных ситуациях:

Необходимо упорядочить объекты во времени или пространстве, когда интересуются не сравнением степени выраженности какого-либо свойства объектов, а лишь их взаимным пространственным или временным расположением;

Необходимо упорядочить объекты по степени выраженности какого-либо их свойства, при этом не требуется производить его точное измерение;

Какое-либо свойство в принципе измеримо, но измерение невозможно по причинам практического или теоретического характера.

Шкалы интервалов являются одним из наиболее важных типов шкал. Их отличительная особенность - возможность положительного линейного преобразования, когда меняется масштаб и начало отсчета, но сохраняется направленность измеряемого свойства. Классическим примером служат температурные шкалы Цельсия t °C и Фаренгейта t °F, связанные линейным преобразованием шкальных значений

t °F = 1,8 t °C + 32. (2.1)

Шкалы интервалов сохраняют не только различие и упорядочение объектов, но и отношение «расстояний» между парами. Однако отношение самих шкальных значений при этом не сохраняется. Например, в случае температурных шкал Цельсия и Фаренгейта нельзя сказать, что вода, нагретая до 80 °C вдвое горячее, чем вода при 40 °C, поскольку в шкале Фаренгейта соотношение температур воды будет уже другим: 176 °F и 104°F соответственно. В то же время отношение разностей этих температур в обеих шкалах сохраняется. Так, если отсчитывать разность температур двух упомянутых объектов в обеих шкалах относительно третьего объекта, охлажденного до 0 °C (32 °F), то отношение разностей в обеих температурных шкалах составляет одну и ту же величину 2:

(80 °C - 0 °C)/(40 °C - 0 °C) = (176 °F - 32 °F)/(104 °F - 32 °F) = 2.

Частным случаем шкал интервалов являются шкалы отношений, когда нулевая точка означает отсутствие измеряемого свойства. Шкалы отношений сохраняют не только отношения свойств объектов, но и отношения «расстояний» между парами объектов. Примерами измерений в шкалах отношений являются стоимостные измерения.

Иногда рассматривают также шкалы разностей и абсолютные шкалы . Первые являются частным случаем шкал интервалов; примерами служат измерения прироста продукции в абсолютных единицах, увеличение численности учреждений и т.п. Абсолютные шкалы характеризуются единственностью измерения и применяются, например, для измерения количества объектов.

Шкалы измерения следует учитывать при вычислении средних величин. В общей теории статистики различают структурные и степенные средние . К первым относятся мода и медиана , ко вторым - арифметическая , геометрическая , квадратическая и гармоническая средние.

Наименее информативная номинальная шкала допускает лишь один вид средних - моду. При переходе к более информативной порядковой шкале в моде добавляется медиана как мера центральной тенденции . Эти средние являются частными случаями средних по Коши - функции, ставящей в соответствие совокупности измерений (х 1 , х 2 , …, х n ) любое число, заключенное между наибольшим и наименьшим членом вариационного ряда.

Обобщением понятия степенных средних является средние по Колмогорову F y n , задаваемые строго монотонными функциями y:

F y n (х 1 , х 2 , …, х n ) = y -1 (1/n )S y (х i ), (2.2)

где y -1 - функция, обратная y; х i - значение i -го измерения показателя Х ; n - объем выборки. При y(х ) = х ; ln х ; х –1 ; х 2 формула (2.2) определяет соответственно среднее арифметическое, среднее геометрическое, среднее гармоническое и среднее квадратическое.

В шкале интервалов и разностей центральную тенденцию адекватно отражает среднее арифметическое, в шкале отношений - среднее геометрическое, однако среднее геометрическое не рекомендуется применять при обработке данных, измеренных в шкале интервалов и разностей. В абсолютной шкале можно пользоваться любым средним, т.е. с усложнением типа шкалы измерения число средних, адекватных в этой шкале, увеличивается.


ВВЕДЕНИЕ

ПОНЯТИЕ ОБ ИЗМЕРИТЕЛЬНЫХ ШКАЛАХ

ВИДЫ ШКАЛ

1 Шкала наименований

2 Шкала порядка

3 Шкала интервалов

4 Шкала отношений

5 Другие шкалы

6 Взаимосвязь различных школ между собой

ЗАКЛЮЧЕНИЕ


ВВЕДЕНИЕ


Актуальность исследования заключается в том, что в своей работе психолог достаточно часто сталкивается с проблемой измерения индивидуально-психологических особенностей таких, например, как креативность, нейротизм, импульсивность, свойства нервной системы и т.п. Для этого в психодиагностике разрабатываются специальные измерительные процедуры, в том числе и тесты.

Помимо того в психологии широко используются экспериментальные методы и модели исследования психических феноменов в познавательной и личностной сферах. Это могут быть модели процессов познания (восприятия, памяти, мышления) или особенности мотивации, ценностных ориентации, личности и т.п. Главное заключается в том, что в ходе эксперимента изучаемые характеристики могут получать количественное выражение. Количественные данные, полученные в результате тщательно спланированного эксперимента по определенным измерительным процедурам, используются затем для статистической обработки.

Любое измерение производится с помощью инструмента измерения. То, что измеряется, называется переменной, то чем измеряют - инструмент измерения. Результаты измерения называются данными либо результатами (говорят «были получены данные измерения»). Полученные данные могут быть разного качества - относиться к одной из четырех шкал измерения. Каждая шкала ограничивает использование определённых математических операций, и соответственно ограничивает применение определённых методов математической статистики.

Цель реферата - изучить понятие и классификацию измерительной шкалы.

.Рассмотреть понятие измерительной шкалы.

.Проанализировать классификацию и основные виды измерительных шкал.

.Сделать компаративный анализ сравнительных шкал.

В процессе выполнения реферата использовались следующие методы: метод индукция и дедукция, сравнение и др.

Источниками информации для написания работы явились учебники, периодические издания по теме исследования, научные труды Гусева А.Н., Стивенсона С., Перегудова Ф.И., Тарасевича Ф.П., Корнилова Т.В.


1. ПОНЯТИЕ ОБ ИЗМЕРИТЕЛЬНЫХ ШКАЛАХ


Измерение может быть самостоятельным исследовательским методом, но может выступать и как компонент целостной процедуры эксперимента. Как самостоятельный метод измерение служит для выявления индивидуальных различий в поведении субъектов и отражения ими окружающего мира, а также для исследования адекватности отражения и структуры индивидуального опыта.

Измерение в процедуре эксперимента рассматривается как метод регистрации состояния объекта исследования и соответственно изменения этого состояния в ответ на экспериментальное воздействие.

Понятие измерительной шкалы введено в психологию американским ученым С. Стивенсом. Его трактовка шкалы и сегодня используется в научной литературе.

Итак, приписывание чисел объектам создает шкалу. Создание шкалы возможно, поскольку существует изоморфизм формальных систем и систем действий, производимых над реальными объектами.

Числовая система является множеством элементов с реализованными на нем отношениями и служит моделью для множества измеряемых объектов.

Различают несколько типов таких систем и соответственно несколько типов шкал. Операции, а именно - способы измерения объектов, задают тип шкалы. Шкала в свою очередь характеризуется видом преобразований, которые могут быть отнесены к результатам измерения. Если не соблюдать это правило, то структура шкалы нарушится, а данные измерения нельзя будет осмысленно интерпретировать.

Тип шкалы однозначно определяет совокупность статистических методов, которые могут быть применены для обработки данных измерения.

Шкала (лат. scala - лестница) - инструмент для измерения непрерывных свойств объекта; представляет собой числовую систему, где отношения между различными свойствами объектов выражены свойствами числового ряда.

П. Суппес и Дж. Зинес дали классическое определение шкалы: «Пусть А-эмпирическая система с отношениями (ЭСО), R- полная числовая система с отношениями (ЧСО), F- функция, которая гомоморфно отображает - А в подсистему - R (если в области нет двух разных объектов с одинаковой мерой, что является отображением изоморфизма). Назовем шкалой упорядоченную тройку <А; R; f>».

Обычно в качестве числовой системы R выбирается система действительных чисел или ее подсистема. Множество А - это совокупность измеряемых объектов с системой отношений, определенной на этом множестве. Отображение f- правило приписывания каждому объекту определенного числа.

В настоящее время определение Суппеса и Зинеса уточнено. Во-первых, в определение шкалы вводится G - группа допустимых преобразований. Во-вторых, множество А - понимается не только как числовая система, но и как любая формальная знаковая система, которая может быть поставлена в отношение гомоморфизма с эмпирической системой. Таким образом, шкала - это четверка <А; R; f; G>. Согласно современным представлениям, внутренней характеристикой шкалы выступает именно группа G, а f - является лишь привязкой шкалы к конкретной ситуации измерения.

В настоящее время под измерением понимается конструирование любой функции, которая изоморфно отображает эмпирическую структуру в символическую структуру. Как уже отмечено выше, совсем не обязательно такой структурой должна быть числовая. Это может быть любая структура, с помощью которой можно измерить характеристики объектов, заменив их другими, более удобными в обращении (в том числе - числами). (2 ,3).


ВИДЫ ШКАЛ


В психологии различные шкалы используются для изучения разных характеристик социально-психологических явлений.

Первоначально выделялись четыре типа числовых систем, определявших соответственно четыре уровня, или шкалы измерения:

) шкала наименований - номинальная;

) шкала порядка - ординальная;

)шкала интервалов - интервальная;

) шкала отношений - пропорциональная.

Первые две шкалы получили название не метрических, вторые две - метрических. В соответствии с этим в психологии говорят и о двух подходах к психологическим измерениям: метрическом (более строгом) и не метрическом (менее строгом).

Ряд специалистов выделяют также абсолютную шкалу и шкалу разностей.

Рассмотрим особенности каждого типа шкал.


2.1 Шкала наименований


Шкала наименований или номинальная шкала используется только для обозначения принадлежности объекта к одному из нескольких непересекающихся классов. Приписываемые объектам символы, которые могут быть цифрами, буквами, словами или некоторыми специальными символами, представляют собой только метки соответствующих классов. Характерной особенностью номинальной шкалы является принципиальная невозможность упорядочить классы по измеряемому признаку - к ним нельзя прилагать суждения типа "больше - меньше", "лучше - хуже", и т.п. Примерами номинальных шкал являются: пол и национальность, специальность по образованию, марка сигарет, предпочитаемый цвет. Единственным отношением, определенным на шкале наименований, является отношение тождества: объекты, принадлежащие к одному классу, считаются тождественными, к разным классам - различными. Частным случаем шкалы наименований является дихотомическая шкала, с помощью которой фиксируют наличие у объекта определенного качества или его соответствие некоторому требованию.

В этой шкале числа присвоенные объектам говорят только лишь о том, что эти объекты различаются. По сути, это классификационная шкала. Так, например, исследователь может приписать женщинам ноль, а мужчинам единицу, или наоборот, и это будет говорить только о том, что это два разных класса объектов. Чисел в шкале наименований может быть столько, сколько существует классов объектов подлежащих измерению, но ни сумма этих чисел, ни их разность, ни произведение не будут иметь никакого смысла, т.к. в шкале наименований не осуществима ни одна арифметическая операция. Числа в шкале наименований могут быть любыми, хотя, как правило, отрицательные не используются. Наиболее часто в психологических исследованиях используется дихотомическая шкала наименований, которая задается двумя числами - нулем и единицей. Наиболее распространенные примеры таких шкал в психологии это: пол (мужчина - женщина), успешность выполнения задания (справился - не справился), соответствие норме (норма - патология), психологический тип (экстраверт - интроверт).

Шкала наименований получается путем присвоения "имен" объектам. При этом нужно разделить множество объектов на непересекающиеся подмножества.

Иными словами, объекты сравниваются друг с другом, и определяется их эквивалентность - неэквивалентность. В результате процедуры образуется совокупность классов эквивалентности. Объекты, принадлежащие одному классу, эквивалентны друг другу и отличны от объектов, относящихся к другим классам. Эквивалентным объектам присваиваются одинаковые имена.

Операция сравнения является первичной для построения любой шкалы. Для построения такой шкалы нужно, чтобы объект был равен или подобен сам себе (х=х для всех значений х), т.е. на множестве объектов должно быть реализовано отношение рефлексивности. Для психологических объектов, например испытуемых или психических образов, это отношение реализуемо, если абстрагироваться от времени. Но поскольку операции попарного (в частности) сравнения множества всех объектов эмпирически реализуются неодновременно, то в ходе эмпирического измерения даже это простейшее условие не выполняется.

Следует запомнить: любая шкала есть идеализация, модель реальности, даже такая простейшая, как шкала наименований.

На объектах должно быть реализовано отношение симметрии (R (X=Y) -> R (Y=X)) и транзитивности R (X=Y, Y=Z) -> R (X=Z). Но на множестве результатов психологических экспериментов эти условия могут нарушаться.

Кроме того, многократное повторение эксперимента (накопление статистики) приводит к "перемешиванию" состава классов: в лучшем случае мы можем получить оценку, указывающую на вероятность принадлежности объекта к классу.

Таким образом, нет оснований говорить о шкале наименований (номинативной шкале или шкале строгой классификации) как простейшей шкале, начальном уровне измерения в психологии.

Существуют более "примитивные" (с эмпирической, но не с математической точки зрения) виды шкал: шкалы, основанные на отношениях толерантности; шкалы "размытой" классификации и т.п.

О шкале наименований можно говорить в том случае, когда эмпирические объекты просто "метятся" числом.

Итак, если объекты в каком-то отношении эквивалентны, то мы имеем право отнести их к одному классу. Главное, как говорил Стивенс, не приписывать один и тот же символ разным классам или разные символы одному и тому же классу.

Несмотря на тенденцию "завышать" мощность шкалы, психологи очень часто применяют шкалу наименований в исследованиях. "Объективные" измерительные процедуры при диагностике личности приводят к типологизации: отнесению конкретной личности к тому или иному типу. Примером такой типологии являются классические темпераменты: холерик, сангвиник, меланхолик и флегматик. (2, 3).

Самая простая номинативная шкала называется дихотомической. При измерениях по дихотомической шкале измеряемые признаки можно кодировать двумя символами или цифрами, например 0 и 1, или 2 и 6, или буквами А и Б, а также любыми двумя отличающимися друг от друга символами. Признак, измеренный по дихотомической шкале, называется альтернативным. В дихотомической шкале все объекты, признаки или изучаемые свойства разбиваются на два непересекающихся класса, при этом исследователь ставит вопрос о том, «проявился» ли интересующий его признак у испытуемого или нет.

Исследователь, пользующийся шкалой наименований, может применять следующие инвариантные статистики: относительные частоты, моду, корреляции случайных событий, критерий.


2 Шкала порядка


Шкалы порядка позволяют не только разбивать объекты на классы, но и упорядочивать классы по возрастанию (убыванию) изучаемого признака: об объектах, отнесенных к одному из классов, известно, но только то, что они тождественны друг другу, но также, что они обладают измеряемым свойством в большей или меньшей степени, чем объекты из других классов. Но при этом порядковые шкалы не могут ответить на вопрос, на сколько (во сколько раз), это свойство выражено сильнее у объектов из одного класса, чем у объектов из другого класса. Примерами шкал порядка могут служить уровень образования, военные и академические звания, тип поселения (большой - средний - малый город - село), некоторые естественно научные шкалы (твердость минералов, сила шторма). Так, можно сказать, что 6-балльный шторм заведомо сильнее, чем 4-балльный, но нельзя определить, насколько он сильнее; выпускник университета имеет более высокий образовательный уровень, чем выпускник средней школы, но разница в уровне образования не поддается непосредственному измерению Упорядоченные классы достаточно часто нумеруют в порядке возрастания (убывания) измеряемого признака. Однако в силу того, что различия в значении признака точному измерению не поддаются, к шкалам порядка, также как к номинальным шкалам, действия арифметики не применяют. Исключение составляют оценочные шкалы, при использовании которых объект получает (или сам выставляет) оценки, исходя из определенного числа баллов. К таким шкалам относятся, например, школьные оценки, для которых считается вполне допустимым рассчитывать, например, средний балл по аттестату зрелости. Строго говоря, подобные шкалы являются частным случаем шкалы порядка, так как нельзя определить, на сколько знания "отличника" больше, чем знания "троечника", но в силу некоторых теоретических соображений с ними часто обращаются, как со шкалами более высокого ранга - шкалами интервалов. Другим частным случаем шкалы порядка является ранговая шкала, применяемая обычно в тех случаях, когда признак заведомо не поддается объективному измерению (например, красота или степень неприязни), или когда порядок объектов более важен, чем точная величина различий между ними (места, занятые в спортивных соревнованиях). В таких случаях эксперту иногда предлагают проранжировать по определенному критерию некий список объектов, качеств, мотивов и т.п.

Числа, присвоенные объектам в этой шкале будут говорить о степени выраженности измеряемого свойства у этих объектов, но, при этом, равные разности чисел не будут означать равных разностей в количествах измеряемых свойств. В зависимости от желания исследователя большее число может означать большую степень выраженности измеряемого свойства (как в шкале твердости минералов) или меньшую (как в таблице результатов спортивных соревнований), но в любом случае, между числами и соответствующими им объектами сохраняется отношение порядка. Шкала порядка задается положительными числами, и чисел в этой шкале может быть столько, сколько существует измеряемых объектов. Примеры шкал порядка в психологии: рейтинг испытуемых по какому-либо признаку, результаты экспертной оценки испытуемых и т.д.

Если можно установить порядок следования психологических объектов в соответствии с выраженностью какого-то свойства, то используется порядковая шкала.

Порядковая шкала образуется, если на множестве реализовано одно бинарное отношение - порядок (отношения "больше" и "меньше"). Построение шкалы порядка - процедура более сложная, чем создание шкалы наименований. Она позволяет зафиксировать ранг, или место, каждого значения переменной по отношению к другим значениям. Этот ранг может быть результатом установления порядка между какими-то стимулами или их атрибутами самим испытуемым (первичный показатель методик ранжирования, или рейтинговых процедур), но может и устанавливаться экспериментатором в качестве вторичного показателя (например, при ранжировке частот положительных ответов испытуемых на вопросы, относящиеся к разным темам).

Классы эквивалентности, выделенные при помощи шкалы наименований, могут быть упорядочены по некоторому основанию. Различают шкалу строгого порядка (строгая упорядоченность) и шкалу слабого порядка (слабая упорядоченность). В первом случае на элементах множества реализуются отношения "больше" и "меньше", а во втором - "не больше или равно" и "меньше или равно".

Значения величин можно заменять квадратами, логарифмами, нормализовать и т.д. При таких преобразованиях значений величин, определенных по шкале порядка, место объектов на шкале не изменяется, т.е. не происходит инверсий.

Еще Стивенс высказывал точку зрения, что результаты большинства психологических измерений в лучшем случае соответствуют лишь шкалам порядка.

Шкалы порядка широко используются в психологии познавательных процессов, экспериментальной психосемантике, социальной психологии: ранжирование, оценивание, в том числе педагогическое, дают порядковые шкалы. Классическим примером использования порядковых шкал является тестирование личностных черт, а также способностей. Большинство же специалистов в области тестирования интеллекта полагают, что процедура измерения этого свойства позволяет использовать интервальную шкалу и даже шкалу отношений.

Как бы то ни было, эта шкала позволяет ввести линейную упорядоченность объектов на некоторой оси признака. Тем самым вводится важнейшее понятие - измеряемое свойство, или линейное свойство, тогда как шкала наименований использует "вырожденный" вариант интерпретации понятия "свойство": "точечное" свойство (свойство есть - свойства нет).

В порядковой (ранговой) шкале должно быть не меньше трех классов (групп): например, ответы на опросник: «да», «не знаю», «нет»; или - низкий, средний, высокий; и т.п., с тем расчетом, чтобы можно было расставить измеренные признаки по порядку. Именно поэтому эта шкала и называется порядковой, или ранговой, шкалой.

От классов просто перейти к числам, если считать, что низший класс получает ранг (код или цифру) 1, средний - 2, высший - 3 (или наоборот). Чем больше число классов разбиений всей экспериментальной совокупности, тем шире возможности статистической обработки полученных данных и проверки статистических гипотез.

При кодировании порядковых переменных им можно приписывать любые цифры (коды), но в этих кодах (цифрах) обязательно должен сохраняться порядок, или, иначе говоря, каждая последующая цифра должна быть больше (или меньше) предыдущей.

Для интерпретации данных, полученных посредством порядковой шкалы, можно использовать более широкий спектр статистических мер (в дополнение к тем, которые допустимы для шкалы наименований).

В качестве характеристики центральной тенденции можно использовать медиану, а в качестве характеристики разброса - процентили. Для установления связи двух измерений допустима порядковая корреляция (т-Кэнделла и р-Спирмена).

Числовые значения порядковой шкалы нельзя складывать, вычитать, делить и умножать. (2, 3).


3 Шкала интервалов


В отличие от двух предыдущих шкал в шкале интервалов существует единица измерения, либо реальная (физическая), либо условная, при помощи которой можно установить количественные различия между объектами в отношении измеряемого свойства. Равные разности чисел в этой шкале будут означать равные различия в количествах измеряемого свойства у разных объектов, или у одного и того же объекта в разные моменты времени. Однако, то, что одно число оказывается в несколько раз больше другого не обязательно говорит о таких же отношениях в количествах измеряемых свойств. В шкале интервалов может быть задействована вся числовая ось, но при этом ноль не указывает на отсутствие измеряемого свойства, т.к. нулевая точка часто является произвольной (например, как в шкале температуры по Цельсию), либо вообще отсутствует, как в некоторых шкалах психологических тестов. Благодаря таким свойствам, шкала интервалов получила широкое распространение в психологии, на ней основано большинство психодиагностических шкал: интеллекта, самооценки и др.

Примерами шкалы интервалов являются календарное время, температурные шкалы Цельсия и Фаренгейта. Шкала оценок с заданным количеством баллов часто рассматривается как интервальная в предположении, что минимальное и максимальное положения на шкале соответствуют некоторым крайним оценкам или позициям, и интервалы между баллами шкалы имеют одинаковую длину. К шкалам отношений относится абсолютное большинство измерительных шкал, применяемых в науке, технике и быту: рост и вес, возраст, расстояние, сила тока, время (длительность промежутка между двумя событиями), температура по Кельвину (абсолютный нуль).

Шкала интервалов является первой метрической шкалой. Собственно, начиная с нее, имеет смысл говорить об измерениях в узком смысле этого слова - о введении меры на множестве объектов. Шкала интервалов определяет величину различий между объектами в проявлении свойства. С помощью шкалы интервалов можно сравнивать два объекта. При этом выясняют, насколько более или менее выражено определенное свойство у одного объекта, чем у другого.

Интервальная шкала позволяет применять практически всю параметрическую статистику для анализа данных, полученных с ее помощью. Помимо медианы и моды для характеристики центральной тенденции используется среднее арифметическое, а для оценки разброса - дисперсия. Можно вычислять коэффициенты асимметрии и эксцесса и другие параметры распределения. Для оценки величины статистической связи между переменными применяется коэффициент линейной корреляции Пирсона и т.д.

Большинство специалистов по теории психологических измерений полагают, что тесты измеряют психические свойства с помощью шкалы интервалов. Прежде всего, это касается тестов интеллекта и достижений. Численные значения одного теста можно переводить в численные значения другого теста с помощью линейного преобразования: х" = ах + b.

Ряд авторов полагают, что относить тесты интеллекта к шкалам интервалов нет оснований. Во-первых, каждый тест имеет "нуль" - любой индивид может получить минимальный балл, если не решит ни одной задачи в отведенное время. Во-вторых, тест имеет максимум шкалы - балл, который испытуемый может получить, решив все задачи за минимальное время. В-третьих, разница между отдельными значениями шкалы неодинакова. По крайней мере, нет никаких теоретических и эмпирических оснований утверждать, что 100 и 120 баллов по шкале IQ отличаются настолько же, насколько 80 и 100 баллов.

Скорее всего, шкала любого теста интеллекта является комбинированной шкалой, с естественным минимумом и\или максимумом, но порядковой. Однако эти соображения не мешают тестологам рассматривать шкалу IQ как интервальную, преобразуя "сырые" значения в шкальные с помощью известной процедуры "нормализации" шкалы


4 Шкала отношений


Шкала отношений является единственной шкалой, на которой определено отношение отношения, то есть, разрешены арифметические действия умножения и деления и, следовательно, возможен ответ на вопрос, во сколько раз одно значение больше или меньше другого.

В шкале отношений также существует единица измерения, при помощи которой объекты можно упорядочить в отношении измеряемого свойства и установить количественные различия между ними. Особенностью шкалы отношений является то, что к числам в этой шкале применимы все математические операции, а это значит, что отношения между числами соответствуют, или пропорциональны отношениям между количествами измеряемых свойств у разных объектов. В этой шкале обязательно, по, крайней мере, теоретически, присутствует ноль, который говорит об абсолютном отсутствии измеряемого свойства. Большинство ныне существующих физических шкал (длины, массы, времени, температуры по Кельвину и т.д.) являются яркими примерами шкал отношений. В психологии из шкал отношений наиболее часто используются шкала вероятностей и шкала ""сырых"" баллов (количество решенных заданий, количество ошибок, количество положительных ответов и т.д.).

Шкалу отношений называют также шкалой равных отношений. Особенностью этой шкалы является наличие твердо фиксированного нуля, который означает полное отсутствие какого-либо свойства или признака. Шакала отношений является наиболее информативной шкалой, допускающей любые математические операции и использование разнообразных статистических методов.

Шкала отношений, по сути, очень близка интервальной, поскольку если строго фиксировать начало отсчета, то любая интервальная шкала превращается в шкалу отношений.

Шкала отношений показывает данные о выраженности свойств объектов, когда можно сказать, во сколько раз один объект больше или меньше другого.

Это возможно лишь тогда, когда помимо определения равенства, рангового порядка, равенства интервалов известно равенство отношений. Шкала отношений отличается от шкалы интервалов тем, что на ней определено положение "естественного" нуля. Классический пример - шкала температур Кельвина.

Именно в шкале отношений производятся точные и сверхточные измерения в таких науках, как физика, химия, микробиология и др. Измерение по шкале отношений производятся и в близких к психологии науках, таких, как психофизика, психофизиология, психогенетика.

Измерения массы, времени реакции и выполнения тестового задания - области применения шкалы отношений.

Отличием этой шкалы от абсолютной является отсутствие "естественной" масштабной единицы.


2.5 Другие шкалы


Дихотомическая классификация часто рассматривается как вариант шкалы наименований. Это верно, за исключением одного случая, когда мы измеряем свойство, имеющее всего лишь два уровня выраженности: "есть - нет", так называемое "точечное" свойство. Примеров таких свойств много: наличие или отсутствие у испытуемого какой-либо наследственной болезни (дальтонизм, болезнь Дауна, гемофилия и др.), абсолютного слуха и др. В этом случае исследователь имеет право проводить "оцифровку" данных, присваивая каждому из типов цифру "1" или "О", и работать с ними, как со значениями шкалы интервалов.

Шкала разностей, в отличие от шкалы отношений, не имеет естественного нуля, но имеет естественную масштабную единицу измерения. Ей соответствует аддитивная группа действительных чисел. Классическим примером этой шкалы является историческая хронология. Она сходна со шкалой интервалов. Разница лишь в том, что значения этой шкалы нельзя умножать (делить) на константу. Поэтому считается, что шкала разностей - единственная с точностью до сдвига. В психологии шкала разностей используется в методиках парных сравнений.

Абсолютная шкала является развитием шкалы отношений и отличается от нее тем, что обладает естественной единицей измерения. В этом ее сходство со шкалой разностей. Число решенных задач ("сырой" балл), если задачи эквивалентны, - одно из проявлений абсолютной шкалы.

В психологии абсолютные шкалы не используются. Данные, полученные с помощью абсолютной шкалы, не преобразуются, шкала тождественна сама себе. Любые статистические меры допустимы.

В литературе, посвященной проблемам психологических измерений, упоминаются и другие типы шкал: ординальная (порядковая) с естественным началом, логинтервальная, упорядоченная метрическая и др.

Все написанное выше относится к одномерным шкалам. Шкалы могут быть и многомерными: шкалируемый признак в этом случае имеет ненулевые проекции на два (или более) соответствующих параметра. Векторные свойства, в отличие от скалярных, являются многомерными.


2.6 Взаимосвязь различных школ между собой


Между самими шкалами тоже существуют отношения порядка. Каждая из перечисленных шкал является шкалой более высокого порядка по отношению к предыдущей шкале. Так, например, измерения, произведенные в шкале отношений можно перевести в шкалу интервалов, из шкалы интервалов - в шкалу порядка и т.д., но обратная процедура будет невозможна, т.к. при переходе к шкалам более низкого порядка часть информации (о единицах измерения, количествах свойств) теряется.

Тем не менее, это не всегда означает, что шкалы более высокого порядка предпочтительней по отношению к шкалам более низкого порядка, а в ряде случаев - даже, наоборот. Например, количество правильно выполненных заданий в тесте интеллекта (шкала отношений) гораздо выгодней представить в стандартизированной шкале IQ (шкала интервалов), а множество разнообразных поведенческих реакций в виде типа личности (шкала наименований). Наконец, существуют такие признаки объектов, которые можно измерить в любой шкале, как возраст, и такие, к измерению которых подходит только одна шкала, как, например, пол. На выбор измерительной шкалы, таким образом, могут оказывать влияние многие факторы, как достоинства самой шкалы, так и специфика самого объекта измерения.

·Измерительные инструменты

Для проведения измерения в естественных и точных науках, в быту применяются специальные измерительные инструменты, которые во многих случаях представляют собой довольно сложные приборы. Качество измерения определяется точностью, чувствительностью и надежностью инструмента. Точностью инструмента называется его соответствие существующему в данной области стандарту (эталону). Чувствительность инструмента определяется величиной единицы измерения, например, в зависимости от природы объекта, расстояние может измеряться в микронах, сантиметрах или километрах. Надежностью называется способность инструмента к воспроизведению результатов измерения в пределах чувствительности шкалы. В гуманитарных и общественных науках (за исключением экономики и демографии) большинство показателей не поддаются непосредственному измерению с помощью традиционных технических средств. Вместо них применяются всевозможные анкеты, тесты, стандартизированные интервью и т.п., получившие общее название измерительного инструментария. Кроме очевидных проблем точности, чувствительности и надежности, для гуманитарного инструментария существует также достаточно острая проблема валидности - способности измерять именно то свойство личности, которое предполагается его автором.

·Качественные и количественные шкалы

В силу того, что символы, присваиваемые объектам в соответствии с порядковыми и номинальными шкалами, не обладают числовыми свойствами, даже если записываются с помощью цифр, эти два типа шкал получили общее название качественных, в отличие от количественных шкал интервалов и отношений. Шкалы интервалов и отношений имеют общее свойство, отличающее их от качественных шкал: они предполагают не только определенный порядок между объектами или их классами, но и наличие некоторой единицы измерения, позволяющей определять, насколько значение признака у одного объекта больше или меньше, чем у другого. Другими словами, на обеих количественных шкалах, помимо отношений тождества и порядка, определено отношение разности, к ним можно применять арифметические действия сложения и вычитания. Естественно, что символы, приписываемые объектам в соответствии с количественными измерительными шкалами, могут быть только числами.

·Шкала интервалов и шкала отношений

Основное различие между шкалами интервалов и отношений состоит в том, что шкала отношений имеет абсолютный нуль, не зависящий от произвола наблюдателя и соответствующий полному отсутствию измеряемого признака, а на шкале интервалов нуль устанавливается произвольно или в соответствии с некоторыми условными договоренностями.

·Дискретные и непрерывные шкалы

Количественные шкалы делятся на: дискретные и непрерывные. Дискретные показатели измеряются в результате счета: число детей в семье, количество решенных задач, и т.п. Непрерывные шкалы предполагают, что измеряемое свойство изменяется непрерывно, и при наличии соответствующих приборов и средств, могло бы быть измерено с любой необходимой степенью точности. Результаты измерения непрерывных показателей довольно часто выражаются целыми числами (например, шкала IQ для измерения интеллекта), но это связано не с природой самих показателей, а с характером измерительных процедур. Различают первичные и вторичные измерения. Первичные получаются в результате непосредственного измерения: длина и ширина прямоугольника, число родившихся и умерших за год, ответ на вопрос теста, оценка на экзамене. Вторые являются результатом некоторых манипуляций с первичными измерениями, обычно с помощью неких логико-математических конструкций: площадь прямоугольника, демографические коэффициенты смертности, рождаемости и естественного прироста, результаты тестирования, зачисление или не зачисление в институт по результатам вступительных экзаменов.


ЗАКЛЮЧЕНИЕ

измерительный шкала психологический дискретный

Таким образом, шкалы измерений принято классифицировать по типам измеряемых данных, которые определяют допустимые для данной шкалы математические преобразования, а также типы отношений, отображаемых соответствующей шкалой. Современная классификация шкал была предложена в 1946 году Стэнли Смитом Стивенсом.

·Шкала наименований (номинальная, классификационная)

Используется для измерения значений качественных признаков. Значением такого признака является наименование класса эквивалентности, к которому принадлежит рассматриваемый объект. Примерами значений качественных признаков являются названия государств, цвета, марки автомобилей и т.п. Такие признаки удовлетворяют аксиомам тождества:


Либо А = В, либо А? В;

Если А = В, то В = А;

Если А = В и В = С, то А = С.


При большом числе классов используют иерархические шкалы наименований. Наиболее известными примерами таких шкал являются шкалы, используемые для классификации животных и растений.

С величинами, измеряемыми в шкале наименований, можно выполнять только одну операцию - проверку их совпадения или несовпадения. По результатам такой проверки можно дополнительно вычислять частоты заполнения (вероятности) для различных классов, которые могут использоваться для применения различных методов статистического анализа - критерия согласия Хи-квадрат, критерия Крамера для проверки гипотезы о связи качественных признаков и др.

·Порядковая шкала (или ранговая)

Строится на отношении тождества и порядка. Субъекты в данной шкале ранжированы. Но не все объекты можно подчинить отношению порядка. Например, нельзя сказать, что больше круг или треугольник, но можно выделить в этих объектах общее свойство-площадь, и таким образом становится легче установить порядковые отношения. Для данной шкалы допустимо монотонное преобразование. Такая шкала груба, потому что не учитывает разность между субъектами шкалы. Пример такой шкалы: балльные оценки успеваемости (неудовлетворительно, удовлетворительно, хорошо, отлично), шкала Мооса.

·Интервальная шкала (она же Шкала разностей)

Здесь происходит сравнение с эталоном. Построение такой шкалы позволяет большую часть свойств существующих числовых систем приписывать числам, полученным на основе субъективных оценок. Например, построение шкалы интервалов для реакций. Для данной шкалы допустимым является линейное преобразование. Это позволяет приводить результаты тестирования к общим шкалам и осуществлять, таким образом сравнение показателей. Пример: шкала Цельсия.

Начало отсчёта произвольно, единица измерения задана. Допустимые преобразования - сдвиги. Пример: измерение времени.

·Абсолютная шкала (она же Шкала отношений)

это интервальная шкала, в которой присутствует дополнительное свойство - естественное и однозначное присутствие нулевой точки. Пример: число людей в аудитории. В шкале отношений действует отношение "во столько-то раз больше". Это единственная из четырёх шкал имеющая абсолютный ноль. Нулевая точка характеризует отсутствие измеряемого качества. Данная шкала допускает преобразование подобия (умножение на константу). Определение нулевой точки - сложная задача для психологических исследований, накладывающая ограничение на использование данной шкалы. С помощью таких шкал могут быть измерены масса, длина, сила, стоимость (цена). Пример: шкала Кельвина (температур, отсчитанных от абсолютного нуля, с выбранной по соглашению специалистов единицей измерения - Кельвин).

Из рассмотренных шкал первые две являются не метрическими, а остальные - метрическими.

С вопросом о типе шкалы непосредственно связана проблема адекватности методов математической обработки результатов измерения. В общем случае адекватными являются те статистики, которые инвариантны относительно допустимых преобразований используемой шкалы измерений.


СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ


1.Гусев А.Н., Измайлов Ч.А., Михалевская М.Б. Измерение в психологии М., 1998. С. 10 - 16

.Бахрушин В.Є. Методи аналізу даних. - Запоріжжя, КПУ, 2011

.Дружинин В.Н. Экспериментальная психология: Учебное пособие - М.: ИНФРА-М, 1997.

.Дружинин В.Н. Экспериментальная психология- СПб: Питер, 2000. - 320с.

.Ермолаев О.Ю. Математическая статистика для психологов. М.: Московский психолого-социальный институт: Флинта, 2003. - 366 с.

.Корнилова Т.В. Введение в психологический эксперимент. Учебник для ВУЗов. М.: Изд-во ЧеРо, 2001.

.Математика в социологии: Моделирование и обраб. информации / [Й. Гальтунг, П. Суппес, С. Новак и др.] ; Ред. [и авт. предисл.] А. Аганбегян [и др.] ; Пер. с англ. Л. Б. Черного; Под ред. А. Г. Аганбегяна и Ф. М. Бородкина. - М.: Мир, 1977. - 551 с.: ил.

.Перегудов Ф.И., Тарасевич Ф.П. Введение в системный анализ. - М.: Высшая школа, 1989. - 367 с.

.Психологические измерения: Основы теории измерений (Суппес П., Зинес Дж.). Психофизические шкалы (Льюс Р., Галантер Е.): 1967 - 196 с.

.Словарь практического психолога / Сост. С.Ю. Головин. - Мн: Харвест, М.: ООО «Издательство АСТ», 2003.

11.Stevens, Stanley Smith, "Psychophysics: introduction to its perceptual neural and social prospects", Wiley, 1975.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.



Поделиться