Теплопроводность. математическое описание, частные задачи теплопроводности

Теплопроводность - это один из видов теплопередачи. Передача тепла может осуществляться с помощью различных механизмов.

Все тела излучают электромагнитные волны. При комнатной температуре это в основном излучение инфракрасного диапазона. Так происходит лучистый теплообмен .

При наличии поля тяжести еще одним механизмом теплопередачи в текучих средах может служить конвекция . Если к сосуду, содержащему жидкость или газ, тепло подводится через днище, в первую очередь прогреваются нижние порции вещества, их плотность уменьшается, они всплывают вверх и отдают часть полученного тепла верхним слоям.

При теплопроводности перенос энергии осуществляется в результате непосредственной передачи энергии от частиц (молекул, атомов, электронов), обладающих большей энергией, частицам с меньшей энергией.

В нашем курсе будет рассматриваться передача теплоты путем теплопроводности.

Рассмотрим сначала одномерный случай, когда температура зависит только от одной координаты х . Пусть две среды разделены плоской перегородкой толщины l (рис. 23.1). Температуры сред Т 1 и Т 2 поддерживаются постоянными. Опытным путем можно установить, что количество тепла Q , переданное через участок перегородки площадью S за время t равно

, (23.1)

где коэффициент пропорциональности k зависит от материала стенки.

При Т 1 > Т 2 тепло переносится в положительном направлении оси х , при Т 1 < Т 2 – в отрицательном. Направление распространения тепла можно учесть, если в уравнении (23.1) заменить (Т 1 - Т 2)/l на (- dT /dx ). В одномерном случае производная dT /dx представляет собой градиент температуры . Напомним, что градиент – это вектор, направление которого совпадает с направлением наиболее быстрого возрастания скалярной функции координат (в нашем случае Т ), а модуль равен отношению приращения функции при малом смещении в этом направлении к расстоянию, на котором это приращение произошло.

Чтобы придать уравнениям, описывающим перенос тепла, более общий и универсальный вид, ведем в рассмотрение плотность потока тепла j - количество тепла, переносимое через единицу площади в единицу времени

Тогда соотношение (23.1) можно записать в виде

Здесь знак «минус» отражает тот факт, что направление теплового потока противоположно направлению градиента температуры (направлению ее возрастания). Таким образом, плотность потока тепла является векторной величиной. Вектор плотности потока тепла направлен в сторону уменьшения температуры.

Если температура среды зависит от всех трех координат, то соотношение (23.3) принимает вид

где , - градиент температуры (е 1 , е 2 , е 3 - орты осей координат).

Соотношения (23.3) и (23.4) представляют основной закон теплопроводности (закон Фурье): плотность потока тепла пропорциональна градиенту температуры. Коэффициент пропорциональности k называется коэффициентом теплопроводности (или просто теплопроводностью). Т.к. размерность плотности потока тепла [j ] = Дж/(м 2 с), а градиента температуры [dT/dx ] = К/м, то размерность коэффициента теплопроводности [k] = Дж/(м×с×К).

В общем случае температура в различных точках неравномерно нагретого вещества меняется с течением времени. Рассмотрим одномерный случай, когда температура зависит только от одной пространственной координаты х и времени t ,и получим уравнение теплопроводности - дифференциальное уравнение, которому удовлетворяет функция T = T (x ,t ).

Выделим мысленно в среде малый элемент объема в виде цилиндра или призмы, образующие которого параллельны оси х , а основания перпендикулярны (рис 23.2). Площадь основания S , а высота dx . Масса этого объема dm = rSdx , а его теплоемкость c×dm где r - плотность вещества, с - удельная теплоемкость. Пусть за малый промежуток времени dt температура в этом объеме изменилась на dT . Для этого вещество в объеме должно получить количество тепла, равное произведению его теплоемкости на изменение температуры: . С другой стороны, dQ можно может поступить в объем только через основания цилиндра: (плотности потоков тепла j могут быть как положительными, так и отрицательными). Приравнивая выражения для dQ , получим

.

Заменяя отношения малых приращений соответствующими производными, придем к соотношению

. (23.5)

Подставим в формулу (23.5) выражение (23.3) для плотности потока тепла

. (23.6)

Полученное уравнение называется уравнением теплопроводности . Если среда однородна, и теплопроводность k не зависит от температуры, уравнение принимает вид

, (23.7)

где постоянная называется коэффициентом температуропроводности среды.

Уравнениям (23.6) – (23.8) удовлетворяет бесчисленное множество функций T = T (x ,t ).

Для выделения единственного решения уравнения теплопроводности необходимо к уравнению присоединить начальные и граничные условия.

Начальное условие состоит в задании распределения температуры в среде Т (х ,0) в начальный момент времени t = 0.

Граничные условия могут быть различными в зависимости от температурного режима на границах. Чаще всего встречаются ситуации, когда на границах заданы температура или плотность потока тепла как функции времени.

В ряде случаев в среде могут оказаться источники тепла. Теплота может выделяться в результате прохождения электрического тока, химических или ядерных реакций. Наличие источников тепла можно учесть введением объемной плотности энерговыделения q (x ,y ,z ), равной количеству теплоты, выделяемому источниками в единице объема среды за единицу времени. В этом случае в правой части уравнения (23.5) появится слагаемое q :

.

Изучение любого физического явления сводится к установлению зависимости между величинами, характеризующими это явление. Для сложных физических процессов, в которых определяющие величины могут существенно изменяться в пространстве и времени, установить зависимость между этими величинами достаточно сложно. В таких случаях используют методы математической физики, которые заключаются в том, что ограничивается промежуток времени и из всего пространства рассматривается некоторый элементарный объем. Это позволяет в пределах выбранного объема и данного промежутка времени пренебречь изменениями величин, характеризующих процесс, и существенно упростить зависимость.

Выбранные таким образом элементарный объем dV и элементарный промежуток времени , в пределах которых рассматривается процесс, с математической точки зрения являются величинами бесконечно малыми, а с физической точки зрения – величинами еще достаточно большими, чтобы в их пределах можно было считать среду как сплошную, пренебрегая ее дискретным строением. Полученная таким образом зависимость является общим дифференциальным уравнением процесса. Интегрируя дифференциальные уравнения, можно получить аналитическую зависимость между величинами для всей области интегрирования и всего рассматриваемого промежутка времени.

Для решения задач, связанных с нахождением температурного поля, необходимо иметь дифференциальное уравнение теплопроводности.

Примем следующие допущения:

    тело однородно и изотропно;

    физические параметры постоянны;

    деформация рассматриваемого объема, связанная с изменением температуры, очень мала по сравнению с самим объемом;

    внутренние источники теплоты в теле, распределены равномерно.

В основу вывода дифференциального уравнения теплопроводности положим закон сохранения энергии, который сформулируем так:

Количество теплоты dQ , введенное в элементарный объем dV извне за время вследствие теплопроводности, а также от внутренних источников, равно изменению внутренней энергии или энтальпии вещества, содержащегося в элементарном объеме.

где dQ 1 – количество теплоты, введенное в элементарный объем dV путем теплопроводности за время ;

dQ 2 – количество теплоты, которое за время выделилось в элементарном объеме dV за счет внутренних источников;

dQ – изменение внутренней энергии (изохорный процесс) или энтальпии вещества (изобарный процесс), содержащегося в элементарном объеме dV за время .

Для получения уравнения рассмотрим элементарный объем в виде кубика со сторонами dx , dy , dz (см. рис.1.2.). Кубик расположен так, чтобы его грани были параллельны соответствующим координатным плоскостям. Количество теплоты, которое подводится к граням элементарного объема за время в направлении осей x , y , z обозначим соответственно dQ x , dQ y , dQ z .

Количество теплоты, которое будет отводиться через противоположные грани в тех же направлениях, обозначим соответственно dQ x + dx , dQ y + dy , dQ z + dz .

Количество теплоты, подведенное к грани dxdy в направлении оси x за время , составляет:

где q x – проекция плотности теплового потока на направление нормали к указанной грани. Соответственно количество теплоты, отведенное через противоположную грань будет:

Разница между количеством теплоты, подведенном к элементарному объему, и количеством теплоты, отведенного от него, представляет собой теплоту:

Функция q является непрерывной в рассматриваемом интервале dx и может быть разложена в ряд Тейлора:

Если ограничиться двумя первыми слагаемыми ряда, то уравнение запишется в виде:

Аналогичным образом можно найти количество теплоты, подводимое к объему в направлении двух других координатных осей y и z .

Количество теплоты dQ , подведенное в результате теплопроводности к рассматриваемому объему, будет равно:

Второе слагаемое определим, обозначив количество теплоты, выделяемое внутренними источниками в единице объема среды в единицу времени q v и назовем его мощностью внутренних источников теплоты [Вт/м 3 ], тогда:

Третья составляющая в нашем уравнении найдется в зависимости от характера ТД процесса изменения системы.

При рассмотрении изохорного процесса вся теплота, подведенная к элементарному объему, уйдет на изменение внутренней энергии вещества, заключенного в этом объеме, т.е. dQ = dU .

Если рассматривать внутреннюю энергию единицы объема u = f (t , v ) , то можно записать:

, Дж/м 3

, Дж/кг

где c v изохорная теплоемкость или единицы объема или единицы массы, [Дж/м 3 ];

ρ – плотность, [кг/м 3 ].

Соберем полученные выражения:

Полученное выражение является дифференциальным уравнением энергии для изохорного процесса переноса теплоты .

Аналогично выводится уравнение для изобарного процесса. Вся теплота, подведенная к объему уйдет на изменение энтальпии вещества, заключенного в объеме.

Полученное соотношение является дифференциальным уравнением энергии для изобарного процесса.

В твердых телах перенос теплоты осуществляется по закону Фурье
, значение теплоемкости можно принять
. Напомним, что проекция вектора плотности теплового потока на координатные оси определяются выражениями:



Последнее выражение называют дифференциальным уравнением теплопроводности. Оно устанавливает связь между временным и пространственным изменениями температуры в любой точке тела, в котором происходит процесс теплопроводности.

Наиболее общее дифференциальное уравнение теплопроводности в частных производных имеет такую же форму, но в нем величины ρ , , с являются функциями времени и пространства. Это уравнение описывает большое количество задач теплопроводности, представляющих практический интерес. Если принять теплофизические параметры постоянными, то уравнение будет проще:

Обозначим
, тогда:

Коэффициент пропорциональности а [м 2 /с] называется коэффициентом температуропроводности и является физическим параметром вещества. Он существенен для нестационарных тепловых процессов характеризует скорость изменения температуры. Если коэффициент теплопроводности характеризует способность тел проводить теплоту, то коэффициент температуропроводности является мерой теплоинерционных свойств тела. Например, жидкости и газы обладают большей тепловой инерционностью и, следовательно, малым коэффициентом температуропроводности, а металлы наоборот имеют малую тепловую инерционность.

Если имеются внутренние источники теплоты, а температурное поле является стационарным, то мы получаем уравнение Пуассона:

Наконец, при стационарной теплопроводности и отсутствии внутренних источников теплоты мы получаем уравнение Лапласа:

Условия однозначности для теплопроводности.

Так как дифференциальное уравнение теплопроводности выведено из общих законов физики, то оно описывает целый класс явлений. Для его решения необходимо задать граничные условия или условия однозначности.

Условия однозначности включают:

    геометрические условия – характеризуют форму и размеры тела;

    физические условия – характеризуют физические свойства среды и тела;

    начальные (временные) условия – характеризуют распределение температур в теле в начальный момент времени, задаются при исследовании нестационарных процессов;

    граничные условия – характеризуют взаимодействие рассматриваемого тела с окружающей средой.

Граничные условия могут быть заданы несколькими способами.

Граничные условия первого рода. Задается распределение температуры на поверхности тела для каждого момента времени:

t c = f (x , y , z , τ )

где t c – температура на поверхности тела;

x , y , z – координаты поверхности тела.

В частном случае, когда температура на поверхности является постоянной на протяжении всего времени протекания процессов теплообмена, уравнение упрощается:

t c = const

Граничные условия второго рода. Задаются значения теплового потока для каждой точки поверхности тела и любого момента времени. Аналитически выглядит так:

q c = f (x , y , z , τ )

В простейшем случае плотность теплового потока по поверхности тела остается постоянной. Такой случай имеет место при нагревании металлических изделий в высокотемпературных печах.

Граничные условия третьего рода. При этом задаются температура окружающей среды t ср и закон теплообмена между поверхностью тела и средой. Для описания процесса теплообмена используется закон Ньютона-Рихмана. Согласно этому закону количество теплоты, отдаваемое или принимаемое единицей поверхности тела в единицу времени, пропорционально разности температур поверхности тела и среды:

где α коэффициент пропорциональности, называется коэффициентом теплоотдачи [Вт/(м 2 ·К)], характеризует интенсивность теплообмена. Численно он равен количеству теплоты, отдаваемому единицей поверхности тела в единицу времени при разности температур равной одному градусу. Согласно закону сохранения энергии количество теплоты, которое отводится окружающей среде, должно равняться теплу, подводимому вследствие теплопроводности из внутренних частей тела, то есть:

Последнее уравнение является граничным условием третьего рода.

Встречаются более сложные технические задачи, когда ни одно из перечисленных условий задать невозможно, и тогда приходится решать задачу методом сопряжения. При решении такой задачи должны выполняться условия равенства температур и тепловых потоков по обе стороны от границы раздела. В общем случае условия сопряженности можно записать:

Решение сопряженной задачи связано с нахождением температурных полей по обе стороны границы раздела.

Формулы для расчета температурного поля и теплового потока в частных задачах стационарной и нестационарной теплопроводности получают исходя из математического описания (математической модели) процесса. Основу модели составляет дифференциальное уравнение теплопроводности, которое выводится с привлечением первого закона термодинамики для тел, не совершающих работы, и закона теплопроводности Фурье. Дифференциальное уравнение физического процесса обычно выводится при тех или иных допущениях, упрощающих процесс. Поэтому получаемое уравнение описывает класс процессов только в пределах принятых допущений. Каждая конкретная задача описывается соответствующими условиями однозначности. Таким образом, математическое описание процесса теплопроводности включает дифференциальное уравнение теплопроводности и условия однозначности.

Рассмотрим вывод дифференциального уравнения теплопроводности при следующих допущениях:

  • а) тело однородно и анизотропно;
  • б) коэффициент теплопроводности зависит от температуры;
  • в) деформация рассматриваемого объема, связанная с изменением температуры, очень мала по сравнению с самим объемом;
  • г) внутри тела имеются равномерно распределенные внутренние источники теплоты q v = f(x, у, z, т) = const;
  • д) перемещение макрочастиц тела относительно друг друга (конвекция) отсутствует.

В теле с принятыми характеристиками выделяем элементарный объем в форме параллелепипеда с ребрами dx, dy, dz, определенно ориентированный в ортогональной системе координат (рис. 14.1). В соответствии с первым законом термодинамики для тел, не совершающих работы, изменение внутренней энергии dU вещества в выделенном объеме за время dx равно сумме теплоты, поступающей

Рис. 14.1.

в объем вследствие теплопроводности dQ x , и теплоты, выделенной внутренними источниками dQ 2 ".

Из термодинамики известно, что изменение внутренней энергии вещества в объеме dV за время dx равно

где dG = рdV - масса вещества; р - плотность; с - удельная массовая теплоемкость (для сжимаемых жидкостей c = c v (изохорной теплоемкости)).

Количество энергии, выделенное внутренними источниками,

где q v - объемная плотность внутренних источников теплоты, Вт/м 3 .

Тепловой поток, поступающий в объем теплопроводностью, разделим на три составляющих соответственно направлению осей координат: Через противоположные грани теплота будет

отводиться в количестве соответственно Разница между количеством подведенной и отведенной теплоты эквивалентна изменению внутренней энергии вследствие теплопроводности dQ v Представим эту величину как сумму составляющих по осям координат:

Тогда в направлении оси х имеем

Поскольку -

плотности тепловых потоков на поотивоположных гоанях.

Функция q x+dx является непрерывной в рассматриваемом интервале dx и может быть разложена в ряд Тейлора:

Ограничиваясь двумя первыми членами ряда и подставляя в (14.6), получаем

Аналогичным образом получаем:

После подстановки (14.8)-(14.10) в (14.4) имеем

Подставляя (14.2), (14.3) и (14.11) в (14.1), получаем дифференциальное уравнение переноса теплоты теплопроводностью с учетом внутренних источников:

Согласно закону теплопроводности Фурье записываем выражения для проекций на оси координат плотности теплового потока:

где Х х, Х у, X z - коэффициенты теплопроводности в направлении координатных осей (тело анизотропное).

Подставляя эти выражения в (14.12), получаем

Уравнение (14.13) называют дифференциальным уравнением теплопроводности для анизотропных тел с независимыми от температуры физическими свойствами.

Если принять X = const, а тело изотропным, уравнение теплопроводности принимает вид

Здесь а = Х/(ср), м 2 /с, - коэффициент температуропроводности,

который является физическим параметром вещества, характеризующим скорость изменения температуры в процессах нагревания или охлаждения. Тела, выполненные из вещества с большим коэффициентом температуропроводности, при прочих равных условиях нагреваются и охлаждаются быстрее.

В цилиндрической системе координат дифференциальное уравнение теплопроводности для изотропного тела с постоянными физическими свойствами имеет вид

где г, z, Ф - соответственно радиальная, осевая и угловая координаты.

Уравнения (14.13), (14.14) и (14.15) описывают процесс теплопроводности в самом общем виде. Конкретные задачи отличаются условиями однозначности , т.е. описанием особенностей протекания рассматриваемого процесса.

Условия однозначности. Исходя из физических представлений о теплопроводности можно выделить факторы, влияющие на процесс: физические свойства вещества; размеры и форма тела; начальное распределение температуры; условия теплообмена на поверхности (границе) тела. Таким образом, условия однозначности подразделяются на физические, геометрические, начальные и граничные (краевые).

Физическими условиями задаются физические параметры вещества X, с, р и распределение внутренних источников.

Геометрическими условиями задаются форма и линейные размеры тела, в котором протекает процесс.

Начальными условиями задается распределение температуры в теле в начальный момент времени t = /(х, у, z ) при т = 0. Начальные условия имеют значение при рассмотрении нестационарных процессов.

В зависимости от характера теплообмена на границе тела граничные (краевые) условия подразделяются на четыре рода.

Граничные условия первого рода. Задается распределение температуры на поверхности t n в течение процесса

В частном случае температура поверхности может оставаться постоянной (/ п = const).

Граничные условия первого рода имеют место, например, при контактном нагреве в процессах склеивания фанеры, прессования древесно-стружечных и древесно-волокнистых плит и т.п.

Граничные условия второго рода. Задается распределение значений плотности теплового потока на поверхности тела в течение процесса

В частном случае тепловой поток на поверхности может оставаться постоянным (

Граничные условия третьего рода соответствуют конвективному теплообмену на поверхности. При этих условиях должна задаваться температура жидкости, в которой находится тело, Г ж = /(т), и коэффициент теплоотдачи ос. В общем случае коэффициент теплоотдачи - переменная величина, поэтому должен задаваться закон его изменения а =/(т). Возможен частный случай: / ж = const; а = const.

Граничные условия четвертого рода характеризуют условия теплообмена тел с различными коэффициентами теплопроводности при их идеальном контакте, когда теплота передается теплопроводностью и тепловые потоки по разные стороны поверхности контакта равны:

Принятые физические допущения, уравнение, выведенное при этих допущениях, и условия однозначности составляют аналитическое описание (математическую модель) процессов теплопроводности. Успех использования полученной модели для решения конкретной задачи будет зависеть от того, насколько принятые допущения и условия однозначности адекватны реальным условиям.

Уравнения (14.14) и (14.15) решаются достаточно просто аналитически для одномерного стационарного теплового режима. Решения рассмотрены ниже. Для двумерных и трехмерных стационарных процессов применяются приближенные численные методы

Для решения уравнений (14.13)-(14.15) в условиях нестационарного теплового режима используется ряд методов, рассмотренных подробно в специальной литературе . Известны точные и приближенные аналитические методы, численные методы и др.

Численное решение уравнения теплопроводности осуществляется в основном методом конечных разностей . Выбор того или иного метода решения зависит от условий задачи. В результате решения аналитическими методами получают формулы, применимые для решения круга инженерных задач в соответствующих условиях. Численные методы дают возможность получить температурное поле t=f(x, у, z, т) в виде набора дискретных значений температуры в различных точках в фиксированные моменты времени для конкретной задачи. Поэтому использование аналитических методов предпочтительно, однако это не всегда возможно для многомерных задач и сложных граничных условий.


Ниже будут рассмотрены несколько задач на определение температурных полей для относительно простых геометрических и физических условий, которые допускают несложные по форме аналитические решения и вместе с тем дают полезную иллюстрацию характерных физических процессов, связанных с теплопередачей в твердом теле.

Рассмотрим стержень с термоизолированной боковой поверхностью (рис. 38). В этом случае теплопередача может осуществляться вдоль стержня. Если совместить стержень с осью декартовой системы координат, то стационарное уравнение теплопроводности будет иметь вид

При постоянных значениях коэффициента теплопроводности объемной мощности тепловыделения последнее уравнение можно дважды проинтегрировать

(75)

Постоянные интегрирования можно найти из граничных условий. Например, если на концах стержня задана температура , . Тогда из (75) имеем

Отсюда найдем постоянные интегрирования и . Решение при указанных граничных условиях получит вид

Из последней формулы видно, что при отсутствии источников тепловыделения . Температура в стержне меняется по линейному закону от одного граничного значения до другого

Рассмотрим теперь другое сочетание граничных условий. Пусть на левом конце стержня внешний источник создает тепловой поток . На правом конце стержня сохраним прежнее условие, таким образом, имеем

Выражая эти условия с помощью общего интеграла (75), получим систему относительно постоянных интегрирования

Найдя из полученной системы неизвестные постоянные, получим решение в виде

Как и в предыдущем примере при отсутствии внутренних источников тепловыделения распределение температуры вдоль стержня будет линейным

При этом температура на левом конце стержня, где расположен внешний источник тепла, будет равна .

В качестве следующего примера найдем стационарное распределение температуры по радиусу в сплошном длинном круговом цилиндре (рис. 39). Существенно упростит задачу в этом случае применение цилиндрической системы координат. В случае цилиндра с большим отношением длины к радиусу и постоянным распределени

ем внутреннего источника тепловыделения, температуру вдали от концов цилиндра можно считать независящей от осевой координаты цилиндрической системы . Тогда стационарное уравнение теплопроводности (71) получит вид

Двукратное интегрирование последнего уравнения (при постоянной ) дает

Условие симметрии распределения температуры на оси цилиндра () дает

Откуда имеем

Последнее условие будет выполнено при . Пусть на поверхности цилиндра () задана температура . Тогда можно найти вторую постоянную интегрирования из уравнения

Отсюда найдем и запишем решение в окончательном виде

В качестве численного примера применения полученного результата рассмотрим распределение температуры в плазме цилиндрического дугового разряда радиусом мм. Граница разрядного канала формируется как область, где прекращаются ионизационные процессы. Выше мы видели, что заметная ионизация газа при нагреве прекращается при K. Поэтому приведенное значение можно принять в качестве граничного K. Объемную плотность мощности тепловыделения в плазме разряда найдем из закона Джоуля–Ленца , где σ - электропроводность плазмы, E - напряженность электрического поля в канале разряда. Характерные для дугового разряда значения составляют 1/Ом м, В/м. Теплопроводность дуговой плазмы выше, чем в нейтральном газе, при температурах порядка 10000 К ее значение может принято равным . Таким образом, параметр . Распределение температуры по радиусу показано на рис. 39. При этом температура на оси разряда () составит 8000 K.

В следующем примере мы рассмотрим тепловое поле, обладающее сферической симметрией. Такие условия возникают, в частности, если источник тепловыделения малого размера размещен в крупном массиве, например межвитковое дуговое замыкание в обмотке крупной электрической машины. В этом случае совмещая центр сферической системы координат с источником тепловыделения мы можем привести стационарное уравнение теплопроводности (64) к виду:

Дважды интегрируя это уравнение, найдем

Возвращаясь к нашему примеру, предположим, что дуговое замыкание имеет место внутри сферической полости радиуса (рис. 40). Примем сопротивление дугового разряда равным Ом, ток разряда А. Тогда мощность, выделяемая в полости составит . Рассмотрим решение вне области действия источника тепловыделения .

Тогда интеграл уравнения теплопроводности упростится

Для вычисления постоянных интегрирования воспользуемся во-первых условием в бесконечно удаленных от места разряда точках , где C - температура окружающей среды. Из последнего выражения находим . Для определения постоянной примем, что выделяющаяся в разряде тепловая энергия равномерно распределяется по поверхности сферической полости радиуса . Поэтому тепловой поток на границе полости составит

Поскольку , то из двух последних уравнений имеем

а решение в окончательном виде

При этом температура на границе полости ( мм) при Вт/мК составит K (рис. 40).

В качестве первого примера этой группы рассмотрим тепловое поле в сечении провода круглого сечения, имеющего канал охлаждения (рис. 41, а ). Провода с каналами охлаждения применяют в обмотках мощных электрических машин и катушек для получения сильных магнитных полей. Для данных устройств характерно длительное протекание токов с амплитудой в сотни и даже тысячи Ампер. Например, прокачивается жидкость, например вода, или газ (водород, воздух), что обеспечивает отбор тепловой энергии с внутренней поверхности канала и охлаждение провода в целом. В данном случае мы имеем дело с принудительным конвективным охлаждением поверхности канала, для которой можно использовать обоснованное выше граничное условие третьего рода (67). Если совместить ось цилиндрической системы координат с осью провода, то температура будет зависеть только от радиальной координаты. Общий интеграл стационарного уравнения теплопроводности для этого случая был получен нами ранее

Объемная плотность мощности тепловыделения находится из закона Джоуля-Ленца: , j - плотность тока, σ - электропроводность,

где R - радиус сечения провода, a - радиус охлаждающего канала. Провод снаружи окружен слоями изоляции, обладающей, по сравнению с проводником, относительно низкой теплопроводностью. Поэтому в первом приближении примем внешнюю поверхность провода теплоизолированной, т. е. тепловой поток на ней

На поверхности охлаждающего канала тепловой поток определяется условием третьего рода

где - коэффициент теплоотдачи, - температура охлаждающего потока. Знак минус в правой части взят вследствие того, что нормаль к внутренней поверхности канала направлена в противоположном к оси направлении.

Подставляя в первое из выписанных граничных условий выражение для температуры (76), получим

откуда . Второе граничное условие дает

откуда находим

Вместе с тем из (76)

Сравнивая последние два выражения, найдем

После подстановки найденных постоянных в общее решение (76) и преобразований получим

Температура на границах сечения провода из полученного решения будет рассчитываться по формулам

Распределение температуры по радиусу сечения для провода с каналом охлаждения с параметрами: A, Вт/мК, 1/Ом м, о С, мм, см показано на рис. 41, б .

Из рис. 41, б следует, что в пределах сечения провода изменение температуры относительно мало по сравнению с ее средней величиной, что объясняется высокой теплопроводностью λ и относительно малыми размерами сечения провода.

Иная ситуация возникает в распределении температуры вдоль провода, состоящего из отдельных участков, контактирующих друг с другом. Ухудшение качества контактов между соединяемыми проводниками приводит к повышению тепловыделения в месте соединения двух проводов по сравнению с самим проводом. Дистанционное измерение температуры провода с помощью тепловизоров или пирометров позволяет диагностировать качество контактных соединений.

Рассчитаем распределение температуры вдоль провода при наличии дефектного контакта. Предыдущий пример показал, что даже в самых жестких условиях изменение температуры в пределах сечения провода весьма мало. Поэтому для нашего расчета можно в первом приближении принять распределение температуры в пределах сечения провода однородным. Распределение тепловыделения вдоль провода зависит от распределения электрического сопротивления вдоль провода, которое однородно вдали от контакта и возрастает при приближении к нему. Совместим ось декартовой системы координат с осью провода, а начало координат - с центром контактной области (рис. 42). В качестве модели распределения сопротивления вдоль провода возьмем следующее распределение погонного сопротивления

где , - параметр, характеризующий линейный размер контактной области . Мощность тепловыделения на единицу длины провода составляет . В расчете на единицу объема мощность тепловыделения равна

где S - сечение провода. Охлаждение провода осуществляется естественной конвекцией с его поверхности. Конвективный тепловой поток с единицы длины провода есть

где α - коэффициент теплоотдачи, - температура окружающего воздуха, p - периметр сечения провода. Теплоотдача в окружающую среду в расчете на единицу объема проводника составит

Стационарное распределение температуры вдоль провода будет подчиняться уравнению теплопроводности

Для дальнейших преобразований полученного уравнения примем постоянным вдоль провода коэффициент теплопроводности , подставим полученные выше выражения для и , а также в качестве искомой функции вместо T возьмем :

придем к линейному неоднородному дифференциальному уравнению

Решение полученного уравнения будем искать в виде суммы общего решения однородного уравнения

и частного решения в форме правой части

.

Вывод уравнения теплопроводности

Представим однородное тело и вычленим из него элементарный объем со сторонами, (рисунок 1).

Рисунок 1. Контрольный объем в прямоугольной системе координат

Входящие потоки тепла, расположенные перпендикулярно к поверхностям обозначим как, . Потоки на противоположных поверхностях выразим из рядов Тейлора:

Внутри тела так же могут быть внутренние источники тепла, если и стоки, если:

Изменение внутренней энергии:

Подставим уравнения (1.1.1) в получившееся уравнение (1.1.5):

Подставив их в уравнение (1.1.6), получим уравнение теплопроводности в общем виде для трехмерного пространства:

Введем коэффициент температуропроводности:

и опустим внутренние источники тепла. Получим уравнение теплопроводности в трехмерном пространстве без внутренних источников тепла:

Условия однозначности

Уравнение (1.1) описывает процесс в общем виде. Для ее применения к конкретной задаче необходимы дополнительные условия, называемые условиями однозначности. Данные условия включают в себя геометрические(форма и размеры тела), физические (физические свойства тела), временные(начальное распределение температуры) и граничные условия(описывают процесс теплообмена с окружающей средой).

Граничные условия можно разделить на три основных рода :

1. Граничные условия Дирихле: задано значение функции на границе.

В случае задачи теплопроводности задают значения температуры на поверхности тела.

2. Граничные условия Неймана: задана нормальная производная функции на границе.

Задают плотность теплового потока на поверхности тела.

3. Граничные условия Робена: задана линейная комбинация значения функции и ее производной на границе.

Описывают теплообмен между поверхностью тела и окружающей средой по закону Ньютона-Рихмана.

В данной работе будут использованы только граничные условия Дирихле, в силу сложности реализации остальных граничных условий.



Поделиться