Геометрический смысл главных компонент. Применение метода главных компонент для обработки многомерных статистических данных

Метод главных компонент – это метод, который переводит большое количество связанных между собой (зависимых, коррелирующих) переменных в меньшее количество независимых переменных, так как большое количество переменных часто затрудняет анализ и интерпретацию информации. Строго говоря, этот метод не относится к факторному анализу, хотя и имеет с ним много общего. Специфическим является, во-первых, то, что в ходе вычислительных процедур одновременно получают все главные компоненты и их число первоначально равно числу исходных переменных; во-вторых, постулируется возможность полного разложения дисперсии всех исходных переменных, т.е. ее полное объяснение через латентные факторы (обобщенные признаки).

Например, представим, что мы провели исследование, в котором измерили у студентов интеллект по тесту Векслера, тесту Айзенка, тесту Равена, а также успеваемость по социальной, когнитивной и общей психологии. Вполне возможно, что показатели различных тестов на интеллект будут коррелировать между собой, так как они, в конце концов, измеряют одну характеристику испытуемого – его интеллектуальные способности, хотя и по-разному. Если переменных в исследовании слишком много (x 1 , x 2 , …, x p ) , а некоторые из них взаимосвязаны, то у исследователя иногда возникает желание уменьшить сложность данных, сократив количество переменных. Для этого и служит метод главных компонент, который создает несколько новых переменных y 1 , y 2 , …, y p , каждая из которых является линейной комбинацией первоначальных переменных x 1 , x 2 , …, x p :

y 1 =a 11 x 1 +a 12 x 2 +…+a 1p x p

y 2 =a 21 x 1 +a 22 x 2 +…+a 2p x p

(1)

y p =a p1 x 1 +a p2 x 2 +…+a pp x p

Переменные y 1 , y 2 , …, y p называются главными компонентами или факторами. Таким образом, фактор – это искусственный статистический показатель, возникающий в результате специальных преобразований корреляционной матрицы . Процедура извлечения факторов называется факторизацией матрицы. В результате факторизации из корреляционной матрицы может быть извлечено разное количество факторов вплоть до числа, равного количеству исходных переменных. Однако факторы, определяемые в результате факторизации, как правило, не равноценны по своему значению.

Коэффициенты a ij , определяющие новую переменную, выбираются таким образом, чтобы новые переменные (главные компоненты, факторы) описывали максимальное количество вариативности данных и не коррелировали между собой. Часто полезно представить коэффициенты a ij таким образом, чтобы они представляли собой коэффициент корреляции между исходной переменной и новой переменной (фактором). Это достигается умножением a ij на стандартное отклонение фактора. В большинстве статистических пакетов так и делается (в программе STATISTICA тоже). Коэффициенты a ij Обычно они представляются в виде таблицы, где факторы располагаются в виде столбцов, а переменные в виде строк:

Такая таблица называется таблицей (матрицей) факторных нагрузок. Числа, приведенные в ней, являются коэффициентами a ij .Число 0,86 означает, что корреляция между первым фактором и значением по тесту Векслера равна 0,86. Чем выше факторная нагрузка по абсолютной величине, тем сильнее связь переменной с фактором.

ПРИМЕНЕНИЕ МЕТОДА ГЛАВНЫХ КОМПОНЕНТ

ДЛЯ ОБРАБОТКИ МНОГОМЕРНЫХ СТАТИСТИЧЕСКИХ ДАННЫХ

Рассмотрены вопросы обработки многомерных статистических данных рейтинговой оценки студентов на основе применения метода главных компонент.

Ключевые слова: многомерный анализ данных, снижение размерности, метод главных компонент, рейтинг.

На практике часто приходится сталкиваться с ситуацией, когда объект исследования характеризуется множеством разнообразных параметров, каждый из которых измеряется или оценивается. Анализ полученного в результате исследования нескольких однотипных объектов массива исходных данных представляет собой практически нерешаемую задачу. Поэтому исследователю необходимо проанализировать связи и взаимозависимости между исходными параметрами, с тем чтобы отбросить часть из них или заменить их меньшим числом каких-либо функций от них, сохранив при этом по возможности всю заключенную в них информацию.

В связи с этим встают задачиснижения размерности, т. е. перехода от исходного массива данных к существенно меньшему количеству показателей, отобранных из числа исходных или полученных путем некоторого их преобразования (с наименьшей потерей информации, содержащейся в исходном массиве), и классификации – разделения рассматриваемой совокупности объектов на однородные (в некотором смысле) группы. Если по большому числу разнотипных и стохастически взаимосвязанных показателей были получены результаты статистического обследования целой совокупности объектов, то для решения задач классификации и снижения размерности следует использовать инструментарий многомерного статистического анализа, в частности метод главных компонент .


В статье предлагается методика применения метода главных компонент для обработки многомерных статистических данных. В качестве примера приводится решение задачи статистической обработки многомерных результатов рейтинговой оценки студентов.

1. Определение и вычисление главных компонент ..png" height="22 src="> признаков. В результате получаем многомерные наблюдения, каждое из которых можно представить в виде векторного наблюдения

где https://pandia.ru/text/79/206/images/image005.png" height="22 src=">.png" height="22 src=">– символ операции транспонирования.

Полученные многомерные наблюдения необходимо подвергнуть статистической обработке..png" height="22 src=">.png" height="22 src=">.png" width="132" height="25 src=">.png" width="33" height="22 src="> допустимых преобразований исследуемых признаков 0 " style="border-collapse:collapse">

– условие нормировки;

– условие ортогональности

Полученные подобным преобразованием https://pandia.ru/text/79/206/images/image018.png" width="79" height="23 src="> и представляют собой главные компоненты. Из нихпри дальнейшем анализеисключают переменные с минимальной дисперсией , т. е..png" width="131" height="22 src="> в преобразовании (2)..png" width="13" height="22 src="> этой матрицы равны дисперсиям главных компонент .

Таким образом, первой главной компонентой https://pandia.ru/text/79/206/images/image013.png" width="80" height="23 src=">называется такая нормированно-центрированная линейная комбинация этих показателей, которая среди всех прочих подобных комбинаций обладает наибольшей дисперсией..png" width="12" height="22 src=">собственный вектор матрицы https://pandia.ru/text/79/206/images/image025.png" width="15" height="22 src=">.png" width="80" height="23 src="> называется такая нормированно-центрированная линейная комбинация этих показателей, которая не коррелирована с https://pandia.ru/text/79/206/images/image013.png" width="80" height="23 src=">.png" width="80" height="23 src="> измеряются в различных единицах, то результаты исследования с помощью главных компонент будут существенно зависеть от выбора масштаба и природы единиц измерения , а полученные линейные комбинации исходных переменных будет трудно интерпретировать. В связи с этим при различных единицах измерения исходных признаков DIV_ADBLOCK310">


https://pandia.ru/text/79/206/images/image030.png" width="17" height="22 src=">.png" width="56" height="23 src=">. После подобного преобразования проводят анализ главных компонент относительно величин https://pandia.ru/text/79/206/images/image033.png" width="17" height="22 src=">, которая является одновременно корреляционной матрицей https://pandia.ru/text/79/206/images/image035.png" width="162" height="22 src=">.png" width="13" height="22 src="> на i - й исходный признак ..png" width="14" height="22 src=">.png" width="10" height="22 src="> равна дисперсии v - й главной компонентыhttps://pandia.ru/text/79/206/images/image038.png" width="10" height="22 src="> используются при содержательной интерпретации главных компонент..png" width="20" height="22 src=">.png" width="251" height="25 src=">

Для проведения расчетов векторные наблюдения агрегируем в выборочную матрицу, в которой строки соответствуют контролируемым признакам, а столбцы – объектам исследования (размерность матрицы – https://pandia.ru/text/79/206/images/image043.png" width="348" height="67 src=">

После центрирования исходных данных находим выборочную корреляционную матрицу по формуле

https://pandia.ru/text/79/206/images/image045.png" width="204" height="69 src=">

Диагональные элементы матрицы https://pandia.ru/text/79/206/images/image047.png" width="206" height="68 src=">

Недиагональные элементы этой матрицы представляют собой выборочные оценки коэффициентов корреляции между соответствующей парой признаков.

Составляем характеристическое уравнение для матрицы 0 " style="margin-left:5.4pt;border-collapse:collapse">

Находим все его корни:

Теперь для нахождения компонент главных векторов подставляем последовательно численные значения https://pandia.ru/text/79/206/images/image065.png" width="16" height="22 src=">.png" width="102" height="24 src=">

Например, при https://pandia.ru/text/79/206/images/image069.png" width="262" height="70 src=">

Очевидно, что полученная система уравнений совместна ввиду однородности и неопределенна, т. е. имеет бесконечное множество решений. Для нахождения единственного интересующего нас решения воспользуемся следующими положениями:

1. Для корней системы может быть записано соотношение

https://pandia.ru/text/79/206/images/image071.png" width="20" height="23 src="> – алгебраическое дополнение j -го элемента любой i -й строки матрицы системы.

2. Наличие условия нормировки (2) обеспечивает единственность решения рассматриваемой системы уравнений..png" width="13" height="22 src=">, определяются однозначно, за исключением того, что все они могут одновременно изменить знак. Однако знаки компонентов собственных векторов не играют существенной роли, так как их смена не влияет на результат анализа. Они могут служить только для индикации противоположных тенденций на соответствующей главной компоненте .

Таким образом, получаем собственный вектор https://pandia.ru/text/79/206/images/image025.png" width="15" height="22 src=">:

https://pandia.ru/text/79/206/images/image024.png" width="12" height="22 src="> проверяем по равенству

https://pandia.ru/text/79/206/images/image076.png" width="503" height="22">

… … … … … … … … …

https://pandia.ru/text/79/206/images/image078.png" width="595" height="22 src=">

https://pandia.ru/text/79/206/images/image080.png" width="589" height="22 src=">

где https://pandia.ru/text/79/206/images/image082.png" width="16" height="22 src=">.png" width="23" height="22 src="> – стандартизированные значения соответствующих исходных признаков.

Составляем ортогональную матрицу линейного преобразования https://pandia.ru/text/79/206/images/image086.png" width="94" height="22 src=">

Так как в соответствии со свойствами главных компонент сумма дисперсий исходных признаков равна сумме дисперсий всех главных компонент, то с учетом того, что мы рассматривали нормированные исходные признаки, можно оценить, какую часть общей изменчивости исходных признаков объясняет каждая из главных компонент. Например, для первых двух главных компонент имеем:

Таким образом, в соответствии с критерием информативности, используемым для главных компонент, найденных по корреляционной матрице, семьпервых главных компонент объясняют 88,97% общей изменчивости пятнадцати исходных признаков.

Используя матрицу линейного преобразования https://pandia.ru/text/79/206/images/image038.png" width="10" height="22 src="> (для семи первых главных компонент):

https://pandia.ru/text/79/206/images/image090.png" width="16" height="22 src="> – число дипломов, полученных в конкурсе научных и дипломных работ ; https://pandia.ru/text/79/206/images/image092.png" width="16" height="22 src=">.png" width="22" height="22 src=">.png" width="22" height="22 src=">.png" width="22" height="22 src="> – награды и призовые места, занятые на региональных, областных и городских спортивных соревнованиях.

3..png" width="16" height="22 src=">(число грамот по результатам участия в конкурсах научных и дипломных работ).

4..png" width="22" height="22 src=">(награды и призовые места, занятые на вузовских соревнованиях).

6. Шестая главная компонента положительно коррелирована с показателем DIV_ADBLOCK311">

4. Третья главная компонента – активность студентов в учебном процессе.

5. Четвертая и шестая компоненты – прилежность студентов в течение весеннего и осеннего семестров соответственно.

6. Пятая главная компонента – степень участия в спортивных соревнованиях университета.

В дальнейшем для проведения всех необходимых расчетов при выделении главных компонент предлагается использовать специализированные статистические программные комплексы, например STATISTICA, что существенно облегчит процесс анализа.

Описанный в данной статье процесс выделения главных компонент на примере рейтинговой оценки студентов предлагается использовать для аттестации бакалавров и магистров.

СПИСОК ЛИТЕРАТУРЫ

1. Прикладная статистика: Классификация и снижение размерности: справ. изд. / , ; под ред. . – М.: Финансы и статистика, 1989. – 607 с.

2. Справочник по прикладной статистике:в 2 т.: [пер. с англ.] / под ред. Э. Ллойда, У. Ледермана, . – М.:Финансы и статистика, 1990. – Т. 2. – 526 c.

3. Прикладная статистика. Основы эконометрики . В 2 т. Т.1. Теория вероятностей и прикладная статистика: учеб. для вузов / , B. C. Мхитарян. – 2-е изд., испр.– М: ЮНИТИ-ДАНА, 2001. – 656 с.

4. Афифи, А. Статистический анализ: подход с использованием ЭВМ: [пер. с англ.] / А. Афифи, С. Эйзен.– М.: Мир, 1982. – 488 с.

5. Дронов, статистический анализ: учеб. пособие / . – Барна3. – 213 с.

6. Андерсон, Т. Введение в многомерный статистический анализ / Т. Андерсон; пер. с англ. [и др.]; под ред. . – М.: Гос. изд-во физ.-мат. лит., 1963. – 500 с.

7. Лоули, Д. Факторный анализ как статистический метод / Д. Лоули, А. Максвелл; пер. с англ. . – М.: Мир, 1967. – 144 с.

8. Дубров, статистические методы: учебник / , . – М.: Финансы и статистика, 2003. – 352 с.

9. Кендалл, М. Многомерный статистический анализ и временные ряды / М. Кендалл, А. Стьюарт;пер. с англ. , ; под ред. , . – М.: Наука,1976. – 736 с.

10. Белоглазов, анализ в задачах квалиметрии образования / // Изв. РАН. Теория и системы управления. – 2006. – №6. – С. 39 – 52.

Материал поступил в редколлегию 8.11.11.

Работа выполнена в рамках реализации федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 2009 – 2013 гг. (государственный контракт № П770).

Компонентный анализ относится к многомерным методам снижения размерности. Он содержит один метод - метод главных компонент. Главные компоненты представляют собой ортогональную систему координат, в которой дисперсии компонент характеризуют их статистические свойства.

Учитывая, что объекты исследования в экономике характеризуются большим, но конечным количеством признаков, влияние которых подвергается воздействию большого количества случайных причин.

Вычисление главных компонент

Первой главной компонентой Z1 исследуемой системы признаков Х1, Х2, Х3 , Х4 ,…, Хn называется такая центрировано - нормированная линейная комбинация этих признаков, которая среди прочих центрировано - нормированных линейных комбинаций этих признаков, имеет дисперсию наиболее изменчивую.

В качестве второй главной компоненты Z2 мы будем брать такую центрировано - нормированную комбинацию этих признаков, которая:

не коррелированна с первой главной компонентой,

не коррелированны с первой главной компонентой, эта комбинация имеет наибольшую дисперсию.

K-ой главной компонентой Zk (k=1…m) мы будем называть такую центрировано - нормированную комбинацию признаков, которая:

не коррелированна с к-1 предыдущими главными компонентами,

среди всех возможных комбинаций исходных признаков, которые не

не коррелированны с к-1 предыдущими главными компонентами, эта комбинация имеет наибольшую дисперсию.

Введём ортогональную матрицу U и перейдём от переменных Х к переменным Z, причём

Вектор выбирается т. о., чтобы дисперсия была максимальной. После получения выбирается т. о., чтобы дисперсия была максимальной при условии, что не коррелированно с и т. д.

Так как признаки измерены в несопоставимых величинах, то удобнее будет перейти к центрированно-нормированным величинам. Матрицу исходных центрированно-нормированных значений признаков найдем из соотношения:

где - несмещенная, состоятельная и эффективная оценка математического ожидания,

Несмещенная, состоятельная и эффективная оценка дисперсии.

Матрица наблюденных значений исходных признаков приведена в Приложении.

Центрирование и нормирование произведено с помощью программы"Stadia".

Так как признаки центрированы и нормированы, то оценку корреляционной матрицы можно произвести по формуле:


Перед тем как проводить компонентный анализ, проведем анализ независимости исходных признаков.

Проверка значимости матрицы парных корреляций с помощью критерия Уилкса.

Выдвигаем гипотезу:

Н0: незначима

Н1: значима

125,7; (0,05;3,3) = 7,8

т.к > , то гипотеза Н0 отвергается и матрица является значимой, следовательно, имеет смысл проводить компонентный анализ.

Проверим гипотезу о диагональности ковариационной матрицы

Выдвигаем гипотезу:

Строим статистику, распределена по закону с степенями свободы.

123,21, (0,05;10) =18,307

т.к >, то гипотеза Н0 отвергается и имеет смысл проводить компонентный анализ.

Для построения матрицы факторных нагрузок необходимо найти собственные числа матрицы, решив уравнение.

Используем для этой операции функцию eigenvals системы MathCAD, которая возвращает собственные числа матрицы:

Т.к. исходные данные представляют собой выборку из генеральной совокупности, то мы получили не собственные числа и собственные вектора матрицы, а их оценки. Нас будет интересовать на сколько “хорошо” со статистической точки зрения выборочные характеристики описывают соответствующие параметры для генеральной совокупности.

Доверительный интервал для i-го собственного числа ищется по формуле:

Доверительные интервалы для собственных чисел в итоге принимают вид:

Оценка значения нескольких собственных чисел попадает в доверительный интервал других собственных чисел. Необходимо проверить гипотезу о кратности собственных чисел.

Проверка кратности производится с помощью статистики

где r-количество кратных корней.

Данная статистика в случае справедливости распределена по закону с числом степеней свободы. Выдвинем гипотезы:

Так как, то гипотеза отвергается, то есть собственные числа и не кратны.

Так как, то гипотеза отвергается, то есть собственные числа и не кратны.

Необходимо выделить главные компоненты на уровне информативности 0,85. Мера информативности показывает какую часть или какую долю дисперсии исходных признаков составляют k-первых главных компонент. Мерой информативности будем называть величину:

На заданном уровне информативности выделено три главных компоненты.

Запишем матрицу =

Для получения нормализованного вектора перехода от исходных признаков к главным компонентам необходимо решить систему уравнений: , где - соответствующее собственное число. После получения решения системы необходимо затем нормировать полученный вектор.

Для решения данной задачи воспользуемся функцией eigenvec системы MathCAD, которая возвращает нормированный вектор для соответствующего собственного числа.

В нашем случае первых четырех главных компонент достаточно для достижения заданного уровня информативности, поэтому матрица U (матрица перехода от исходного базиса к базису из собственных векторов)

Строим матрицу U, столбцами которой являются собственные вектора:

Матрица весовых коэффициентов:

Коэффициенты матрицы А являются коэффициентами корреляции между центрировано - нормированными исходными признаками и ненормированными главными компонентами, и показывают наличие, силу и направление линейной связи между соответствующими исходными признаками и соответствующими главными компонентами.

При моделировании производственно-экономических процессов, чем ниже уровень рассматриваемой производственной подсистемы (структурного полразделения, исследуемого процесса), тем более характерна для входных параметров относительная независимость определяющих их факторов. При анализе основных качественных показателей работы предприятия (производительности труда, себестоимости продукции, прибыли и других показателей) приходится иметь дело с моделированием процессов со взаимосвязанной системой входных параметров (факторов). При этом процесс статистического моделирования систем характеризуется сильной коррелированностью, а в отдельных случаях почти линейной зависимостью определяющих факторов (входных параметров процесса). Это случай мультиколлинеарности, т.е. существенной взаимозависимости (коррелированности) входных параметров, модель регрессии здесь не отражает адекватно реального исследуемого процесса. Если использовать добавление или отбрасывание ряда факторов, увеличение или уменьшение объема исходной информации (количества наблюдений), то это существенно изменит модель исследуемого процесса. Применение такого подхода может резко изменить и величины коэффициентов регрессии, характеризующие влияние исследуемых факторов, и даже направление их влияния (знак при коэффициентах регрессии может измениться на противоположный при переходе от одной модели к другой).

Из опыта научных исследований известно, что большинство экономических процессов отличается высокой степенью взаимовлияния (интеркорреляции) параметров (изучаемых факторов). При расчетах регрессии моделируемых показателей по этим факторам возникают трудности в интерпретации значений коэффициентов в модели. Такая мультиколлинеарность параметров модели часто носит локальный характер, т. е. существенно связаны между собой не все исследуемые факторы, а отдельные группы входных параметров. Наиболее общий случай мультиколлинеарных систем характеризуется таким набором исследуемых факторов, часть из которых образует отдельные группы с сильно взаимосвязанной внутренней структурой и практически не связанных между собой, а часть представляет собой отдельные факторы, несформированные в блоки и несущественно связанные как между собой, так и с остальными факторами, входящими в группы с сильной интеркорреляцией.



Для моделирования такого типа процессов требуется решение проблемы о способе замены совокупности существенно взаимосвязанных факторов на какой-либо другой набор некоррелированных параметров, обладающий одним важным свойством: новый набор независимых параметров должен нести в себе всю необходимую информацию о вариации или дисперсии первоначального набора факторов исследуемого процесса. Эффективным средством решения такой задачи является использование метода главных компонент. При использовании этого метода возникает задача экономической интерпретации комбинаций исходных факторов, вошедших в наборы главных компонент. Метод позволяет уменьшить число входных параметров модели, что упрощает использование получаемых в результате регрессионных уравнений.

Сущность вычисления главных компонент заключается в определении корреляционной (ковариационной) матрицы для исходных факторов X j и нахождении характеристических чисел (собственных значений) матрицы и соответствующих векторов. Характеристические числа являются дисперсиями новых преобразованных переменных и для каждого характеристического числа соответствующий вектор дает вес, с которым старые переменные входят в новые. Главные компоненты – это линейные комбинации исходных статистических величин. Переход от исходных (наблюдаемых) факторов к векторам главных компонент осуществляется посредством поворота координатных осей.

Для регрессионного анализа используют, как правило, лишь несколько первых главных компонент, которые в сумме объясняют от 80 до 90 % всей исходной вариации факторов, остальные из них отбрасываются. В случае если все компоненты включены в регрессию, результат ее, выраженный через первоначальные переменные, будет идентичен множественному уравнению регрессии.

Алгоритм вычисления главных компонент

Допустим, имеется m векторов (исходных факторов) размерностью n (количество измерений), которые составляют матрицу Х:

Поскольку, как правило, основные факторы моделируемого процесса имеют разные единицы измерения (одни выражены в кг, другие – в км, третьи – в денежных единицах и т. д.), для их сопоставления, сравнения степени влияния, применяют операцию масштабирования и центрирования. Преобразованные входные факторы обозначим через y ij . В качестве масштабов выбираются чаще всего величины стандартных (среднеквадратических) отклонений:

где σ j – среднее квадратическое отклонение X j ; σ j 2 - дисперсия; - среднее значение исходных факторов в данной j-ой серии наблюдений

(Центрированной случайной величиной называется отклонение случайной величины от ее математического ожидания. Нормировать величину х – означает перейти к новой величине у, для которой средняя величина равна нулю, а дисперсия – единице).

Определим матрицу парных коэффициентов корреляции

где у ij – нормированное и центрированное значение x j –й случайной величины для i-го измерения; y ik – значение для k-й случайной величины.

Значение r jk характеризует степень разброса точек по отношению к линии регрессии.

Искомая матрица главных компонент F определяется из следующего соотношения (здесь используется транспонированная,- “повернутая на 90 0 ” – матрица величин y ij):

или используя векторную форму:

,

где F – матрица главных компонент, включающая совокупность n полученных значений для m главных компонент; элементы матрицы А являются весовыми коэффициентами, определяющими долю каждой главной компоненты в исходных факторах.

Элементы матрицы А находятся из следующего выражения

где u j – собственный вектор матрицы коэффициентов корреляции R; λ j – соответствующее собственное значение.

Число λ называется собственным значением (или характеристическим числом) квадратной матрицы R порядка m, если можно подобрать такой m-мерный ненулевой собственный вектор u, что Ru = λu.

Множество всех собственных значений матрицы R совпадает с множеством всех решений уравнения |R - λE| = 0. Если раскрыть определитель det |R - λE|, то получится характеристический многочлен матрицы R. Уравнение |R - λE| = 0 называется характеристическим уравнением матрицы R.

Пример определения собственных значений и собственных векторов. Дана матрица .

Ее характеристическое уравнение

Это уравнение имеет корни λ 1 =18, λ 2 =6, λ 3 =3. найдем собственный вектор (направление), соответствующее λ 3 . Подставляя λ 3 в систему, получим:

8u 1 – 6u 2 +2u 3 = 0

6u 1 + 7u 2 - 4u 3 = 0

2u 1 - 4u 2 + 3u 3 = 0

Т. к. определитель этой системы равен нулю, то согласно правилам линейной алгебры, можно отбросить последнее уравнение и решать полученную систему по отношению к произвольной переменной, например u 1 = с= 1

6 u 2 + 2u 3 = - 8c

7 u 2 – 4 u 3 = 6 c

Отсюда получим собственное направление (вектор) для λ 3 =3

1 таким же образом можно найти собственные вектора

Общий принцип, лежащий в основе процедуры нахождения главных компонент показан на рис. 29.



Рис. 29. Схема связи главных компонент с переменными

Весовые коэффициенты характеризуют степень влияния (и направленность) данного “скрытого” обобщающего свойства (глобального понятия) на значения измеряемых показателей Х j .

Пример интерпретации результатов компонентного анализа:

Название главной компоненты F 1 определяется наличием в ее структуре значимых признаков Х 1 , Х 2 , Х 4 , Х 6 , все они представляют характеристики эффективности производственной деятельности, т.е. F 1 - эффективность производства .

Название главной компоненты F 2 определяется наличием в ее структуре значимых признаков Х 3 , Х 5 , Х 7, т.е. F 2 - это размер производственных ресурсов .

ЗАКЛЮЧЕНИЕ

В пособии даны методические материалы, предназначенные для освоения экономико-математического моделирования в целях обоснования принимаемых управленческих решений. Большое внимание уделено математическому программированию, включая целочисленное программирование, нелинейное программирование, динамическое программирование, задачам транспортного типа, теории массового обслуживания, методу главных компонент. Подробно рассмотрено моделирование в практике организации и управления производственными системами, в предпринимательской деятельности и финансовом менеджменте. Изучение представленного материала предполагает широкое использование техники моделирования и расчетов с использованием комплекса программ PRIMA и в среде электронной таблицы Excel.

Главные компоненты

5.1 Методы множественной регрессии и канонической корреляции предполагают разбиение имеющегося набора признаков на две части. Однако, далеко не всегда такое разбиение может быть объективно хорошо обоснованным, в связи с чем возникает необходимость в таких подходах к анализу взаимосвязей показателей, которые предполагали бы рассмотрение вектора признаков как единого целого. Разумеется, при реализации подобных подходов в этой батарее признаков может быть обнаружена определенная неоднородность, когда объективно выявятся несколько групп переменных. Для признаков из одной такой группы взаимные корреляции будут гораздо выше по сравнению с сочетаниями показателей из разных групп. Однако, эта группировка будет опираться на результаты объективного анализа данных, а - не на априорные произвольные соображения исследователя.

5.2 При изучении корреляционных связей внутри некоторого единого набора m признаков


X "= X 1 X 2 X 3 ... X m

можно воспользоваться тем же самым способом, который применялся в множественном регрессионном анализе и методе канонических корреляций - получением новых переменных, вариация которых полно отражает существование многомерных корреляций.

Целью рассмотрения внутригрупповых связей единого набора признаков является определение и наглядное представление объективно существующих основных направлений соотносительной вариации этих переменных. Поэтому, для этих целей можно ввести некие новые переменные Y i , находимые как линейные комбинации исходного набора признаков X

Y 1 = b 1 "X = b 11 X 1 + b 12 X 2 + b 13 X 3 + ... + b 1m X m

Y 2 = b 2 "X = b 21 X 1 + b 22 X 2 + b 23 X 3 + ... + b 2m X m

Y 3 = b 3 "X = b 31 X 1 + b 32 X 2 + b 33 X 3 + ... + b 3m X m (5.1)

... ... ... ... ... ... ...

Y m = b m "X = b m1 X 1 + b m2 X 2 + b m3 X 3 + ... + b m m X m

и обладающие рядом желательных свойств. Пусть для определенности число новых признаков равно числу исходных показателей (m).

Одним из таких желательных оптимальных свойств может быть взаимная некор-релированность новых переменных, то есть диагональный вид их ковариационной матрицы

S y1 2 0 0 ... 0

0 s y2 2 0 ... 0

S y = 0 0 s y3 2 ... 0 , (5.2)

... ... ... ... ...

0 0 0 … s ym 2

где s yi 2 - дисперсия i-го нового признака Y i . Некоррелированность новых переменных кроме своего очевидного удобства имеет важное свойство - каждый новый признак Y i будет учитывать только свою независимую часть информации об изменчивости и коррелированности исходных показателей X.

Вторым необходимым свойством новых признаков является упорядоченный учет вариации исходных показателей. Так, пусть первая новая переменная Y 1 будет учитывать максимальную долю суммарной вариации признаков X. Это, как мы позже увидим, равносильно требованию того, чтобы Y 1 имела бы максимально возможную дисперсию s y1 2 . С учетом равенства (1.17) это условие может быть записано в виде

s y1 2 = b 1 "Sb 1 = max , (5.3)

где S - ковариационная матрица исходных признаков X, b 1 - вектор, включающий коэффициенты b 11 , b 12 , b 13 , ..., b 1m при помощи которых, по значениям X 1 , X 2 , X 3 , ..., X m можно получить значение Y 1 .

Пусть вторая новая переменная Y 2 описывает максимальную часть того компонента суммарной вариации, который остался после учета наибольшей его доли в изменчивости первого нового признака Y 1 . Для достижения этого необходимо выполнение условия

s y2 2 = b 2 "Sb 2 = max , (5.4)

при нулевой связи Y 1 с Y 2 , (т.е. r y1y2 = 0) и при s y1 2 > s y2 2 .

Аналогичным образом, третий новый признак Y 3 должен описывать третью по степени важности часть вариации исходных признаков, для чего его дисперсия должна быть также максимальной

s y3 2 = b 3 "Sb 3 = max , (5.5)

при условиях, что Y 3 нескоррелирован с первыми двумя новыми признаками Y 1 и Y 2 (т.е. r y1y3 = 0, r y2y3 = 0) и s y1 2 > s y2 > s y3 2 .

Таким образом, для дисперсий всех новых переменных характерна упорядоченность по величине

s y1 2 > s y2 2 > s y3 2 > ... > s y m 2 . (5.6)

5.3 Векторы из формулы (5.1) b 1 , b 2 , b 3 , ..., b m , при помощи которых должен осу-ществляться переход к новым переменным Y i , могут быть записаны в виде матрицы


B = b 1 b 2 b 3 ... b m . (5.7)

Переход от набора исходных признаков X к набору новых переменных Y может быть представлен в виде матричной формулы

Y = B" X , (5.8)

а получение ковариационной матрицы новых признаков и достижение условия (5.2) некоррелированности новых переменных в соответствии с формулой (1.19) может быть представлено в виде

B"SB = S y , (5.9)

где ковариационная матрица новых переменных S y в силу их некоррелированности имеет диагональную форму. Из теории матриц (раздел А.25 Приложения А) известно, что, полу-чив для некоторой симметрической матрицы A собственные векторы u i и числа l i и обра-

зовав из них матрицы U и L , можно в соответствии с формулой (А.31) получить результат

U"AU = L ,

где L - диагональная матрица, включающая собственные числа симметрической матрицы A . Нетрудно видеть, что последнее равенство полностью совпадает с формулой (5.9). Поэтому, можно сделать следующий вывод. Желательные свойства новых переменных Y можно обеспечить, если векторы b 1 , b 2 , b 3 , ..., b m , при помощи которых должен осуществляться переход к этим переменным, будут собственными векторами ковариационной матрицы исходных признаков S . Тогда дисперсии новых признаков s yi 2 окажутся собственными числами

s y1 2 = l 1 , s y2 2 = l 2 , s y3 2 = l 3 , ... , s ym 2 = l m (5.10)

Новые переменные, переход к которым по формулам (5.1) и (5.8) осуществляется при помощи собственных векторов ковариационной матрицы исходных признаков, называются главными компонентами. В связи с тем, что число собственных векторов ковариационной матрицы в общем случае равно m - числу исходных признаков для этой матрицы, количество главных компонент также равно m.

В соответствии с теорией матриц для нахождения собственных чисел и векторов ковариационной матрицы следует решить уравнение

(S - l i I )b i = 0 . (5.11)

Это уравнение имеет решение, если выполняется условие равенства нулю определителя

½S - l i I ½ = 0 . (5.12)

Это условие по существу также оказывается уравнением, корнями которого являются все собственные числа l 1 , l 2 , l 3 , ..., l m ковариационной матрицы одновременно совпадающие с дисперсиями главных компонент. После получения этих чисел, для каждого i-го из них по уравнению (5.11) можно получить соответствующий собственный вектор b i . На практике для вычисления собственных чисел и векторов используются специальные итерационные процедуры (Приложение В).

Все собственные векторы можно записать в виде матрицы B , которая будет ортонормированной матрицей, так что (раздел А.24 Приложения А) для нее выполняется

B"B = BB" = I . (5.13)

Последнее означает, что для любой пары собственных векторов справедливо b i "b j = 0, а для любого такого вектора соблюдается равенство b i "b i = 1.

5.4 Проиллюстрируем получение главных компонент для простейшего случая двух исходных признаков X 1 и X 2 . Ковариационная матрица для этого набора равна

где s 1 и s 2 - средние квадратические отклонения признаков X 1 и X 2 , а r - коэффициент корреляции между ними. Тогда условие (5.12) можно записать в виде

S 1 2 - l i rs 1 s 2

rs 1 s 2 s 2 2 - l i

Рисунок 5.1 .Геометрический смысл главных компонент

Раскрывая определитель, можно получить уравнение

l 2 - l(s 1 2 + s 2 2) + s 1 2 s 2 2 (1 - r 2) = 0 ,

решая которое, можно получить два корня l 1 и l 2 . Уравнение (5.11) может быть также записано в виде


s 1 2 - l i r s 1 s 2 b i1 = 0

r s 1 s 2 s 2 2 - l i b i2 0

Подставляя в это уравнение l 1 , получим линейную систему

(s 1 2 - l 1) b 11 + rs 1 s 2 b 12 = 0

rs 1 s 2 b 11 + (s 2 2 - l 1)b 12 = 0 ,

решением которой являются элементы первого собственного вектора b 11 и b 12 . После аналогичной подстановки второго корня l 2 найдем элементы второго собственного вектора b 21 и b 22 .

5.5 Выясним геометрический смысл главных компонент. Наглядно это можно сделать лишь для простейшего случая двух признаков X 1 и X 2 . Пусть для них характерно двумерное нормальное распределение с положительным значением коэффициента корреляции. Если все индивидуальные наблюдения нанести на плоскость, образованную осями признаков, то соответствующие им точки расположатся внутри некоторого корреляционного эллипса (рис.5.1). Новые признаки Y 1 и Y 2 также могут быть изображены на этой же плоскости в виде новых осей. По смыслу метода для первой главной компоненты Y 1 , учитывающей максимально возможную суммарную дисперсию признаков X 1 и X 2 , должен достигаться максимум ее дисперсии. Это означает, что для Y 1 следует найти та-

кую ось, чтобы ширина распределения ее значений была бы наибольшей. Очевидно, что это будет достигаться, если эта ось совпадет по направлению с наибольшей осью корреляционного эллипса. Действительно, если мы спроецируем все соответствующие индивидуальным наблюдениям точки на эту координату, то получим нормальное распределение с максимально возможным размахом и наибольшей дисперсией. Это будет распределение индивидуальных значений первой главной компоненты Y 1 .

Ось, соответствующая второй главной компоненте Y 2 , должна быть проведена перпендикулярно к первой оси, так как это следует из условия некоррелированности главных компонент. Действительно, в этом случае мы получим новую систему координат с осями Y 1 и Y 2 , совпадающими по направлению с осями корреляционного эллипса. Можно видеть, что корреляционный эллипс при его рассмотрении в новой системе координат демонстрирует некоррелированность индивидуальных значений Y 1 и Y 2 , тогда как для величин исходных признаков X 1 и X 2 корреляция наблюдалась.

Переход от осей, связанных с исходными признаками X 1 и X 2 , к новой системе координат, ориентированной на главные компоненты Y 1 и Y 2 , равносилен повороту старых осей на некоторый угол j. Его величина может быть найдена по формуле

Tg 2j = . (5.14)

Переход от значений признаков X 1 и X 2 к главным компонентам может быть осуществлен в соответствии с результатами аналитической геометрии в виде

Y 1 = X 1 cos j + X 2 sin j

Y 2 = - X 1 sin j + X 2 cos j .

Этот же результат можно записать в матричном виде

Y 1 = cos j sin j X 1 и Y 2 = -sin j cos j X 1 ,

который точно соответствует преобразованию Y 1 = b 1 "X и Y 2 = b 2 "X . Иными словами,

= B" . (5.15)

Таким образом, матрица собственных векторов может также трактоваться как включающая тригонометрические функции угла поворота, который следует осуществить для перехода от системы координат, связанной с исходными признаками, к новым осям, опирающимся на главные компоненты.

Если мы имеем m исходных признаков X 1 , X 2 , X 3 , ..., X m , то наблюдения, состав-ляющие рассматриваемую выборку, расположатся внутри некоторого m-мерного корреляционного эллипсоида. Тогда ось первой главной компоненты совпадет по направлению с наибольшей осью этого эллипсоида, ось второй главной компоненты - со второй осью этого эллипсоида и т.д. Переход от первоначальной системы координат, связанной с осями признаков X 1 , X 2 , X 3 , ..., X m к новым осям главных компонент окажется равносильным осуществлению нескольких поворотов старых осей на углы j 1 , j 2 , j 3 , ..., а матрица перехода B от набора X к системе главных компонент Y , состоящая из собственных век-

торов ковариационной матрицы, включает в себя тригонометрические функции углов новых координатных осей со старыми осями исходных признаков.

5.6 В соответствии со свойствами собственных чисел и векторов следы ковариа-ционных матриц исходных признаков и главных компонент - равны. Иными словами

tr S = tr S y = tr L (5.16)

s 11 + s 22 + ... + s mm = l 1 + l 2 + ... + l m ,

т.е. сумма собственных чисел ковариационной матрицы равна сумме дисперсий всех исходных признаков. Поэтому, можно говорить о некоторой суммарной величине дисперсии исходных признаков равной tr S , и учитываемой системой собственных чисел.

То обстоятельство, что первая главная компонента имеет максимальную дисперсию, равную l 1 , автоматически означает, что она описывает и максимальную долю суммарной вариации исходных признаков tr S . Аналогично, вторая главная компонента имеет вторую по величине дисперсию l 2 , что соответствует второй по величине учитываемой доле суммарной вариации исходных признаков и т.д.

Для каждой главной компоненты можно определить долю суммарной величины изменчивости исходных признаков, которую она описывает

5.7 Очевидно, представление о суммарной вариации набора исходных признаков X 1 , X 2 , X 3 , ..., X m , измеряемой величиной tr S , имеет смысл только в том случае, когда все эти признаки измерены в одинаковых единицах. В противном случае придется складывать дисперсии, разных признаков, одни из которых будут выражены в квадратах миллиметров, другие - в квадратах килограммов, третьи – в квадратах радиан или градусов и т.д. Этого затруднения легко избежать, если от именованных значений признаков X ij перейти к их нормированным величинам z ij = (X ij - M i)./ S i где M i и S i - средняя арифметическая величина и среднее квадратическое отклонение i-го признака. Нормированные признаки z имеют нулевые средние, единичные дисперсии и не связаны с какими-либо единицами измерения. Ковариационная матрица исходных признаков S превратится в корреляционную матрицу R .

Все сказанное о главных компонентах, находимых для ковариационной матрицы, остается справедливым и для матрицы R . Здесь точно также можно, опираясь на собственные векторы корреляционной матрицы b 1 , b 2 , b 3 , ..., b m , перейти от исходных признаков z i к главным компонентам y 1 , y 2 , y 3 , ..., y m

y 1 = b 1 "z

y 2 = b 2 "z

y 3 = b 3 "z

y m = b m "z .

Это преобразование можно также записать в компактном виде

y = B"z ,

Рисунок 5.2 . Геометрический смысл главных компонент для двух нормированных признаков z 1 и z 2

где y - вектор значений главных компонент, B - матрица, включающая собственные векторы, z - вектор исходных нормированных признаков. Справедливым оказывается и равенство

B"RB = ... ... … , (5.18)

где l 1 , l 2 , l 3 , ..., l m - собственные числа корреляционной матрицы.

Результаты, получающиеся при анализе корреляционной матрицы, отличаются от аналогичных результатов для матрицы ковариационной. Во-первых, теперь можно рассматривать признаки, измеренные в разных единицах. Во-вторых, собственные векторы и числа, найденные для матриц R и S , также различны. В-третьих, главные компоненты, определенные по корреляционной матрице и опирающиеся на нормированные значения признаков z, оказываются центрироваными - т.е. имеющими нулевые средние величины.

К сожалению, определив собственные векторы и числа для корреляционной матрицы, перейти от них к аналогичным векторами и числам ковариационной матрицы - невозможно. На практике обычно используются главные компоненты, опирающиеся на корреляционную матрицу, как более универсальные.

5.8 Рассмотрим геометрический смысл главных компонент, определенных по корреляционной матрице. Наглядным здесь оказывается случай двух признаков z 1 и z 2 . Система координат, связанная с этими нормированными признаками, имеет нулевую точку, размещенную в центре графика (рис.5.2). Центральная точка корреляционного эллипса,

включающего все индивидуальные наблюдения, совпадет с центром системы координат. Очевидно, что ось первой главной компоненты, имеющая максимальную вариацию, совпадет с наибольшей осью корреляционного эллипса, а координата второй главной компоненты будет сориентирована по второй оси этого эллипса.

Переход от системы координат, связанной с исходными признаками z 1 и z 2 к новым осям главных компонент равносилен повороту первых осей на некоторый угол j. Дисперсии нормированных признаков равны 1 и по формуле (5.14) можно найти величину угла поворота j равную 45 o . Тогда матрица собственных векторов, которую можно определить через тригонометрические функции этого угла по формуле (5.15), будет равна

Cos j sin j 1 1 1

B " = = .

Sin j cos j (2) 1/2 -1 1

Значения собственных чисел для двумерного случая также несложно найти. Условие (5.12) окажется вида

что соответствует уравнению

l 2 - 2l + 1 - r 2 = 0 ,

которое имеет два корня

l 1 = 1 + r (5.19)

Таким образом, главные компоненты корреляционной матрицы для двух нормированных признаков могут быть найдены по очень простым формулам

Y 1 = (z 1 + z 2) (5.20)

Y 2 = (z 1 - z 2)

Их средние арифметические величины равны нулю, а средние квадратические отклонения имеют значения

s y1 = (l 1) 1/2 = (1 + r) 1/2

s y2 = (l 2) 1/2 = (1 - r) 1/2

5.9 В соответствии со свойствами собственных чисел и векторов следы корреляционной матрицы исходных признаков и матрицы собственных чисел - равны. Суммарная вариация m нормированных признаков равна m. Иными словами

tr R = m = tr L (5.21)

l 1 + l 2 + l 3 + ... + l m = m .

Тогда доля суммарной вариации исходных признаков, описываемая i-ой главной компонентой равна

Можно также ввести понятие P cn - доли суммарной вариации исходных признаков, описываемой первыми n главными компонентами,

n l 1 + l 2 + ... + l n

P cn = S P i = . (5.23)

То обстоятельство, что для собственных чисел наблюдается упорядоченность вида l 1 > l 2 > > l 3 > ... > l m , означает, что аналогичные соотношения будут свойственны и долям, описываемой главными компонентами вариации

P 1 > P 2 > P 3 > ... > P m . (5.24)

Свойство (5.24) влечет за собой специфический вид зависимости накопленной доли P сn от n (рис.5.3). В данном случае первые три главные компоненты описывают основную часть изменчивости признаков. Это означает, что часто немногие первые главные компоненты могут совместно учитывать до 80 - 90% суммарной вариации признаков, тогда как каждая последующая главная компонента будет увеличивать эту долю весьма незначительно. Тогда для дальнейшего рассмотрения и интерпретации можно использовать только эти немногие первые главные компоненты с уверенностью, что именно они описывают наиболее важные закономерности внутригрупповой изменчивости и коррелированности

Рисунок 5.3. Зависимость доли суммарной вариации признаков P cn , описываемой n первыми главными компонентами, от величины n. Число признаков m = 9

Рисунок 5.4. К определению конструкции критерия отсеивания главных компонент

признаков. Благодаря этому, число информативных новых переменных, с которыми следует работать, может быть уменьшено в 2 - 3 раза. Таким образом, главные компоненты имеют еще одно важное и полезное свойство - они значительно упрощают описание вариации исходных признаков и делают его более компактным. Такое уменьшение числа переменных всегда желательно, но оно связано с некоторыми искажениями взаимного расположения точек, соответствующих отдельным наблюдениям, в пространстве немногих первых главных компонент по сравнению с m-мерным пространством исходных признаков. Эти искажения возникают из-за попытки втиснуть пространство признаков в пространство первых главных компонент. Однако, в математической статистике доказывается, что из всех методов, позволяющих значительно уменьшить число переменных, переход к главным компонентам приводит к наименьшим искажениям структуры наблюдений связанных с этим уменьшением.

5.10 Важным вопросом анализа главных компонент является проблема определения их количества для дальнейшего рассмотрения. Очевидно, что увеличение числа главных компонент повышает накопленную долю учитываемой изменчивости P cn и приближает ее к 1. Одновременно, компактность получаемого описания уменьшается. Выбор того количества главных компонент, которое одновременно обеспечивает и полноту и компактность описания может базироваться на разных критериях, применяемых на практике. Перечислим наиболее распространенные из них.

Первый критерий основан на том соображении, что количество учитываемых главных компонент должно обеспечивать достаточную информативную полноту описания. Иными словами, рассматриваемые главные компоненты должны описывать большую часть суммарной изменчивости исходных признаков: до 75 - 90%. Выбор конкретного уровня накопленной доли P cn остается субъективным и зависящим как от мнения исследователя, так и от решаемой задачи.

Другой аналогичный критерий (критерий Кайзера) позволяет включать в рассмотрение главные компоненты с собственными числами большими 1. Он основан на том соображении, что 1 - это дисперсия одного нормированного исходного признака. Поэто-

му, включение в дальнейшее рассмотрение всех главных компонент с собственными числами большими 1 означает что мы рассматриваем только те новые переменные, которые имеют дисперсии не меньше чем у одного исходного признака. Критерий Кайзера весьма распространен и его использование заложено во многие пакеты программ статистической обработки данных, когда требуется задать минимальную величину учитываемого собственного числа, и по умолчанию часто принимается значение равное 1.

Несколько лучше теоретически обоснован критерий отсеивания Кеттела. Его применение основано на рассмотрении графика, на котором нанесены значения всех собственных чисел в порядке их убывания (рис.5.4). Критерий Кеттела основан на том эффекте, что нанесенная на график последовательность величин полученных собственных чисел обычно дает вогнутую линию. Несколько первых собственных чисел обнаруживают непрямолинейное уменьшение своего уровня. Однако, начиная с некоторого собственного числа, уменьшение этого уровня становится примерно прямолинейным и довольно пологим. Включение главных компонент в рассмотрение завершается той из них, собственное число которой начинает прямолинейный пологий участок графика. Так, на рисунке 5.4 в соответствие с критерием Кеттела в рассмотрение следует включить только первые три главные компоненты, потому что третье собственное число находится в самом начале прямолинейного пологого участка графика.

Критерий Кеттела основан на следующем. Если рассматривать данные по m признакам, искусственно полученные из таблицы нормально распределенных случайных чисел, то для них корреляции между признаками будут носить совершенно случайный характер и будут близкими к 0. При нахождении здесь главных компонент можно будет обнаружить постепенное уменьшение величины их собственных чисел, имеющее прямолинейной характер. Иными словами, прямолинейное уменьшение собственных чисел может свидетельствовать об отсутствии в соответствующей им информации о коррелированности признаков неслучайных связей.

5.11 При интерпретации главных компонент чаще всего используются собственные векторы, представленные в виде так называемых нагрузок - коэффициентов корреляции исходных признаков с главными компонентами. Собственные векторы b i , удовлетворяющие равенству (5.18), получаются в нормированном виде, так что b i "b i = 1. Это означает, что сумма квадратов элементов каждого собственного вектора равна 1. Собственные векторы, элементы которых являются нагрузками, могут быть легко найдены по формуле

a i = (l i) 1/2 b i . (5.25)

Иными словами, домножением нормированной формы собственного вектора на корень квадратный его собственного числа, можно получить набор нагрузок исходных признаков на соответствующую главную компоненту. Для векторов нагрузок справедливым оказывается равенство a i "a i = l i , означающее, что сумма квадратов нагрузок на i-ю главную компоненту равна i-му собственному числу. Компьютерные программы обычно выводят собственные векторы именно в виде нагрузок. При необходимости получения этих векторов в нормированном виде b i это можно сделать по простой формуле b i = a i / (l i) 1/2 .

5.12 Математические свойства собственных чисел и векторов таковы, что в соответствии с разделом А.25 Приложения А исходная корреляционная матрица R может быть представлена в виде R = BLB" , что также можно записать как

R = l 1 b 1 b 1 " + l 2 b 2 b 2 " + l 3 b 3 b 3 " + ... + l m b m b m " . (5.26)

Следует заметить, что любой из членов l i b i b i " , соответствующий i-й главной компоненте, является квадратной матрицей

L i b i1 2 l i b i1 b i2 l i b i1 b i3 … l i b i1 b im

l i b i b i " = l i b i1 b i2 l i b i2 2 l i b i2 b i3 ... l i b i2 b im . (5.27)

... ... ... ... ...

l i b i1 b im l i b i2 b im l i b i3 b im ... l i b im 2

Здесь b ij - элемент i-го собственного вектора у j-го исходного признака. Любой диагональный член такой матрицы l i b ij 2 есть некоторая доля вариации j-го признака, описываемая i-й главной компонентой. Тогда дисперсия любого j-го признака может быть представлена в виде

1 = l 1 b 1j 2 + l 2 b 2j 2 + l 3 b 3j 2 + ... + l m b mj 2 , (5.28)

означающем ее разложение по вкладам, зависящим от всех главных компонент.

Аналогично, любой внедиагональный член l i b ij b ik матрицы (5.27) является некоторой частью коэффициента корреляции r jk j-го и k-го признаков, учитываемой i-й главной компонентой. Тогда можно выписать разложение этого коэффициента в виде суммы

r jk = l 1 b 1j b 1k + l 2 b 2j b 2k + ... + l m b mj b mk , (5.29)

вкладов в него всех m главных компонент.

Таким образом, из формул (5.28) и (5.29) можно наглядно видеть, что каждая главная компонента описывает определенную часть дисперсии каждого исходного признака и коэффициента корреляции каждого их сочетания.

С учетом, того, что элементы нормированной формы собственных векторов b ij связаны с нагрузками a ij простым соотношением (5.25), разложение (5.26) может быть выписано и через собственные векторы нагрузок R = AA" , что также можно представить как

R = a 1 a 1 " + a 2 a 2 " + a 3 a 3 " + ... + a m a m " , (5.30)

т.е. как сумму вкладов каждой из m главных компонент. Каждый из этих вкладов a i a i " можно записать в виде матрицы

A i1 2 a i1 a i2 a i1 a i3 ... a i1 a im

a i1 a i2 a i2 2 a i2 a i3 ... a i2 a im

a i a i " = a i1 a i3 a i2 a i3 a i3 2 ... a i3 a im , (5.31)

... ... ... ... ...

a i1 a im a i2 a im a i3 a im ... a im 2

на диагоналях которой размещены a ij 2 - вклады в дисперсию j-го исходного признака, а внедиагональные элементы a ij a ik - есть аналогичные вклады в коэффициент корреляции r jk j-го и k-го признаков.



Поделиться