Непрерывные случайные величины теория вероятности. Математика и информатика


Плотностью распределения вероятностей Х называют функцию f(x) – первую производную от функции распределения F(x) :

Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима.

Плотность распределения вероятностей f(x) – называют дифференциальной функцией распределения:

Свойство 1. Плотность распределения - величина неотрицательная:

Свойство 2. Несобственный интеграл от плотности распределения в пределах от до равен единице:

Пример 1.25. Дана функция распределения непрерывной случайной величины Х:

f(x) .

Решение: Плотность распределения равна первой производной от функции распределения:

1. Дана функция распределения непрерывной случайной величины Х:

Найти плотность распределения.

2. Задана функция распределения непрерывной случайной величины Х:

Найти плотность распределения f(x).

1.3. Числовые характеристики непрерывной случайной

величины

Математическое ожидание непрерывной случайной величины Х , возможные значения которой принадлежат всей оси Ох , определяется равенством:

Предполагается, что интеграл сходится абсолютно.

a,b ), то:

f(x) – плотность распределения случайной величины.

Дисперсия непрерывной случайной величины Х , возможные значения которой принадлежат всей оси, определяется равенством:

Частный случай. Если значения случайной величины принадлежат интервалу (a,b ), то:

Вероятность того, что Х примет значения, принадлежащие интервалу (a,b ), определяется равенством:

.

Пример 1.26. Непрерывная случайная величина Х

Найти математическое ожидание, дисперсию и вероятность попадание случайной величины Х в интервале (0;0,7).

Решение: Случайная величина распределена на интервале (0,1). Определим плотность распределения непрерывной случайной величины Х :

а) Математическое ожидание :

б) Дисперсия

в)

Задания для самостоятельной работы:

1. Случайная величина Х задана функцией распределения:

M(x) ;

б) дисперсию D(x) ;

Х в интервал (2,3).

2. Случайная величина Х

Найти: а) математическое ожидание M(x) ;

б) дисперсию D(x) ;

в) определить вероятность попадания случайной величины Х в интервал (1;1,5).

3. Случайная величина Х задана интегральной функцией распределения:

Найти: а) математическое ожидание M(x) ;

б) дисперсию D(x) ;

в) определить вероятность попадания случайной величины Х в интервал .

1.4. Законы распределения непрерывной случайной величины

1.4.1. Равномерное распределение

Непрерывная случайная величина Х имеет равномерное распределение на отрезке [a,b ], если на этом отрезке плотность распределения вероятности случайной величины постоянна, а вне его равна нулю, т.е.:

Рис. 4.

; ; .

Пример 1.27. Автобус некоторого маршрута движется равномерно с интервалом 5 минут. Найти вероятность того, что равномерно распределенная случайная величина Х – время ожидания автобуса составит менее 3 минут.

Решение: Случайная величина Х – равномерно распределена на интервале .

Плотность вероятности: .

Для того чтобы время ожидания не превысило 3 минут, пассажир должен появиться на остановке в интервале от 2 до 5 минут после ухода предыдущего автобуса, т.е. случайная величина Х должна попасть в интервал (2;5). Т.о. искомая вероятность:

Задания для самостоятельной работы:

1. а) найти математическое ожидание случайной величины Х распределенной равномерно в интервале (2;8);

б) найти дисперсию и среднее квадратическое отклонение случайной величины Х, распределенной равномерно в интервале (2;8).

2. Минутная стрелка электрических часов перемещается скачком в конце каждом минуты. Найти вероятность того, что в данное мгновение часы покажут время, которое отличается от истинного не более чем на 20 секунд.

1.4.2. Показательное (экспоненциальное) распределение

Непрерывная случайная величина Х распределена по показательному закону, если ее плотность вероятности имеет вид:

где – параметр показательного распределения.

Таким образом

Рис. 5.

Числовые характеристики:

Пример 1.28. Случайная величина Х – время работы электролампочки - имеет показательное распределение. Определить вероятность того, что время работы лампочки будет не меньше 600 часов, если среднее время работы - 400 часов.

Решение: По условию задачи математическое ожидание случайной величины Х равно 400 часам, следовательно:

;

Искомая вероятность , где

Окончательно:


Задания для самостоятельной работы:

1. Написать плотность и функцию распределения показательного закона, если параметр .

2. Случайная величина Х

Найти математическое ожидание и дисперсию величины Х .

3. Случайная величина Х задана функцией распределения вероятностей:

Найти математическое ожидание и среднее квадратическое отклонение случайной величины.

1.4.3. Нормальное распределение

Нормальным называют распределение вероятностей непрерывной случайной величины Х , плотность которого имеет вид:

где а – математическое ожидание, – среднее квадратическое отклонение Х .

Вероятность того, что Х примет значение, принадлежащее интервалу :

, где

– функция Лапласа.

Распределение, у которого ; , т.е. с плотностью вероятности называется стандартным.

Рис. 6.

Вероятность того, что абсолютная величина отклонена меньше положительного числа :

.

В частности, при а= 0 справедливо равенство:

Пример 1.29. Случайная величина Х распределена нормально. Среднее квадратическое отклонение . Найти вероятность того, что отклонение случайной величины от ее математического ожидания по абсолютной величине будет меньше 0,3.

Решение: .


Задания для самостоятельной работы:

1. Написать плотность вероятности нормального распределения случайной величины Х , зная, что M(x)= 3, D(x)= 16.

2. Математическое ожидание и среднее квадратическое отклонение нормально распределенной случайной величины Х соответственно равны 20 и 5. Найти вероятность того, что в результате испытания Х примет значение, заключенное в интервале (15;20).

3. Случайные ошибки измерения подчинены нормальному закону со средним квадратическим отклонением мм и математическим ожиданием а= 0. Найти вероятность того, что из 3 независимых измерений ошибка хотя бы одного не превзойдет по абсолютной величине 4 мм.

4. Производится взвешивание некоторого вещества без систематических ошибок. Случайные ошибки взвешивания подчинены нормальному закону со средним квадратическим отклонением г. Найти вероятность того, что взвешивание будет произведено с ошибкой, не превосходящей по абсолютной величине 10 г.

В отличие от дискретной случайной величины непрерывные случайные величины невозможно задать в виде таблицы ее закона распределения поскольку невозможно перечислить и выписать в определенной последовательностей все ее значения. Одним из возможных способов задания непрерывной случайной величины является использование функции распределения.

ОПРЕДЕЛЕНИЕ. Функцией распределения называют функцию, определяющую вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки х, т.е.

Иногда вместо термина «Функция распределения» используют термин «Интегральная функция».

Свойства функции распределения:

1. Значения функции распределения принадлежит отрезку : 0F(x)1
2. F(x) - неубывающая функция, т.е. F(x 2)F(x 1), если x 2 >x 1

Следствие 1. Вероятность того, что случайная величина примет значение, заключенное в интервале (a,b), равна приращению функции распределения на этом интервале:

P(aX

Пример 9. Случайная величина Х задана функцией распределения:

Найти вероятность того, что в результате испытания Х примет значение, принадлежащее интервалу (0;2): P(0

Решение: Так как на интервале (0;2) по условию, F(x)=x/4+1/4, то F(2)-F(0)=(2/4+1/4)-(0/4+1/4)=1/2. Итак, P(0

Следствие 2. Вероятность того, что непрерывная случайная величина Х примет одно определенное значение, равна нулю.

Следствие 3. Если возможные значения случайной величины принадлежат интервалу (а;b), то: 1) F(x)=0 при xa; 2) F(x)=1 при xb.
Справедливы следующие предельные соотношения:

График функции распределения расположен в полосе, ограниченной прямыми у=0, у=1 (первое свойство). При возрастании х в интервале (а;b), в котором заключены все возможные значения случайной величины, график «подымается вверх». При xa ординаты графика равны нулю; при xb ординаты графика равны единице:


Рисунок-1

Пример 10. Дискретная случайная величина Х задана таблицей распределения:

X 1 4 8
P 0.3 0.1 0.6

Найти функцию распределения и построить ее график.
Решение: Функция распределения аналитически может быть записана так:


Рисунок-2

ОПРЕДЕЛЕНИЕ: Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) - первую производную от функции распределения F(x): f(x)=F"(x)

Из этого определения следует, что функция распределения является первообразной для плотности распределения.

Теорема. Вероятность того, что непрерывная случайная величина Х примет значение, принадлежащее интервалу (а;b) равна определенному интегралу от плотности распределения, взятому в пределах от а до b:

(8)

Свойства плотности распределения вероятностей:

1. Плотность вероятностей является неотрицательной функцией: f(x)0.
2. Определенный интеграл от -∞ до +∞ от плотности распределения вероятностей непрерывной случайной величины равен 1: f(x)dx=1.
3. Определенный интеграл от -∞ до x от плотности распределения вероятностей непрерывной случайной величины равен функции распределения этой величины: f(x)dx=F(x)

Пример 11. Задана плотность распределения вероятностей случайной величины Х

Найти вероятность того, что в результате испытания Х примет значение, принадлежащее интервалу (0,5;1).

Решение: Искомая вероятность:

Распространим определение числовых характеристик дискретных величин на величины непрерывные. Пусть непрерывная случайная величина Х задана плотностью распределения f(x).

ОПРЕДЕЛЕНИЕ. Математическим ожиданием непрерывной случайной величины Х, возможные значения которой принадлежат отрезку , называют определенный интеграл:

M(x)=xf(x)dx (9)

Если возможные значения принадлежат всей оси Ох, то:

M(x)=xf(x)dx (10)

Модой M 0 (X) непрерывной случайной величины X называют то ее возможное значение, которому соответствует локальный максимум плотности распределения.

Медианой M e (X) непрерывной случайной величины X называют то ее возможное значение, которое определяется равенством:

P{X e (X)}=P{X>M e (X)}

ОПРЕДЕЛЕНИЕ. Дисперсией непрерывной случайной величины называют математическое ожидание квадрата ее отклонения. Если возможные значения Х принадлежат отрезку , то:

D(x)= 2 f(x)dx (11)
или
D(x)=x 2 f(x)dx- 2 (11*)

Если возможные значения принадлежат всей оси х, то.

В теории вероятностей приходится иметь дело со случайными величинами, все значения которых нельзя перебрать. Например, нельзя взять и «перебрать» все значения случайной величины $X$ - время службы часов, поскольку время может измеряться в часах, минутах, секундах, миллисекундах, и т.д. Можно лишь указать некоторый интервал, в пределах которого находятся значения случайной величины.

Непрерывная случайная величина - это случайная величина, значения которой целиком заполняют некоторый интервал.

Функция распределения непрерывной случайной величины

Поскольку перебрать все значения непрерывной случайной величины не представляется возможным, то задать ее можно с помощью функции распределения.

Функцией распределения случайной величины $X$ называется функция $F\left(x\right)$, которая определяет вероятность того, что случайная величина $X$ примет значение, меньшее некоторого фиксированного значения $x$, то есть $F\left(x\right)=P\left(X < x\right)$.

Свойства функции распределения:

1 . $0\le F\left(x\right)\le 1$.

2 . Вероятность того, что случайная величина $X$ примет значения из интервала $\left(\alpha ;\ \beta \right)$, равна разности значений функции распределения на концах этого интервала: $P\left(\alpha < X < \beta \right)=F\left(\beta \right)-F\left(\alpha \right)$.

3 . $F\left(x\right)$ - неубывающая.

4 . ${\mathop{lim}_{x\to -\infty } F\left(x\right)=0\ },\ {\mathop{lim}_{x\to +\infty } F\left(x\right)=1\ }$.

Пример 1
0,\ x\le 0\\
x,\ 0 < x\le 1\\
1,\ x>1
\end{matrix}\right.$. Вероятность попадания случайной величины $X$ в интервал $\left(0,3;0,7\right)$ можем найти как разность значений функции распределения $F\left(x\right)$ на концах этого интервала, то есть:

$$P\left(0,3 < X < 0,7\right)=F\left(0,7\right)-F\left(0,3\right)=0,7-0,3=0,4.$$

Плотность распределения вероятностей

Функция $f\left(x\right)={F}"(x)$ называется плотностью распределения вероятностей, то есть это производная первого порядка, взятая от самой функции распределения $F\left(x\right)$.

Свойства функции $f\left(x\right)$.

1 . $f\left(x\right)\ge 0$.

2 . $\int^x_{-\infty }{f\left(t\right)dt}=F\left(x\right)$.

3 . Вероятность того, что случайная величина $X$ примет значения из интервала $\left(\alpha ;\ \beta \right)$ - это $P\left(\alpha < X < \beta \right)=\int^{\beta }_{\alpha }{f\left(x\right)dx}$. Геометрически это означает, что вероятность попадания случайной величины $X$ в интервал $\left(\alpha ;\ \beta \right)$ равна площади криволинейной трапеции, которая будет ограничена графиком функции $f\left(x\right)$, прямыми $x=\alpha ,\ x=\beta $ и осью $Ox$.

4 . $\int^{+\infty }_{-\infty }{f\left(x\right)}=1$.

Пример 2 . Непрерывная случайная величина $X$ задана следующей функцией распределения $F(x)=\left\{\begin{matrix}
0,\ x\le 0\\
x,\ 0 < x\le 1\\
1,\ x>1
\end{matrix}\right.$. Тогда функция плотности $f\left(x\right)={F}"(x)=\left\{\begin{matrix}
0,\ x\le 0 \\
1,\ 0 < x\le 1\\
0,\ x>1
\end{matrix}\right.$

Математическое ожидание непрерывной случайной величины

Математическое ожидание непрерывной случайной величины $X$ вычисляется по формуле

$$M\left(X\right)=\int^{+\infty }_{-\infty }{xf\left(x\right)dx}.$$

Пример 3 . Найдем $M\left(X\right)$ для случайной величины $X$ из примера $2$.

$$M\left(X\right)=\int^{+\infty }_{-\infty }{xf\left(x\right)\ dx}=\int^1_0{x\ dx}={{x^2}\over {2}}\bigg|_0^1={{1}\over {2}}.$$

Дисперсия непрерывной случайной величины

Дисперсия непрерывной случайной величины $X$ вычисляется по формуле

$$D\left(X\right)=\int^{+\infty }_{-\infty }{x^2f\left(x\right)\ dx}-{\left}^2.$$

Пример 4 . Найдем $D\left(X\right)$для случайной величины $X$ из примера $2$.

$$D\left(X\right)=\int^{+\infty }_{-\infty }{x^2f\left(x\right)\ dx}-{\left}^2=\int^1_0{x^2\ dx}-{\left({{1}\over {2}}\right)}^2={{x^3}\over {3}}\bigg|_0^1-{{1}\over {4}}={{1}\over {3}}-{{1}\over {4}}={{1}\over{12}}.$$

Как известно, случайной величиной называется переменная величина, которая может принимать те или иные значения в зависимости от случая. Случайные величины обозначают заглавными буквами латинского алфавита (X, Y, Z), а их значения – соответствующими строчными буквами (x, y, z). различают непрерывные и дискретные случайные величины .

Непрерывной случайной величиной называется случайная величина Х, если ее функция распределения (интегральная функция распределения) представима в виде:

Функция f (x ) называется плотностью распределения вероятностей случайной величины X (дифференциальной функцией распределения).

Вероятность того, что непрерывная случайная величина X принимает значение в заданном промежутке, вычисляется следующим образом:

Примеры распределений вероятностей непрерывной случайной величины Х:

  • равномерное распределение
  • показательное распределение вероятностей непрерывной случайной величины;
  • нормальное распределение вероятностей непрерывной случайной величины.

При решении задач широко используют числовые характеристики непрерывных случайных величин (таблица 1).

Таблица 1 - Числовые характеристики непрерывных случайных величин
Числовая характеристика Обозначение и формула
Математическое ожидание
Если все возможные значения Х принадлежат интервалу (а, b), то математическое ожидание вычисляют
Дисперсия непрерывной случайной величины Х
иначе
Если все возможные значения Х принадлежат интервалу (а, b), то дисперсию вычисляют
иначе
Среднее квадратическое отклонение непрерывной случайной величины Х

Пример решения задачи по теме «Непрерывные случайные величины»

Задача. Известна плотность вероятности случайной величины:

Найти: а) параметр а; б) функцию распределения F(x); в) вероятность попадания X в интервал (-π/4; π/4).
Построить графики f(x), F(x).

Решение. 1. Зная свойства плотности вероятности - функции f(х), найдем неизвестный параметр а. Из неравенства f(х)≥0, делаем вывод, что а≥0. Далее:

Вычислим данный интеграл. Зная, что его значение должно быть равно единице, выразим а.

А-(-а)=2а. Зная, что

получаем 2а=1, отсюда а=1/2.

если х ≤ 0

Если 0 < х ≤ π, то

= ½ (-cosx + cos0) = ½ (1-cosx)

Если х > π, то

Искомая интегральная функция принимает окончательный вид:

График функции F(x) представлен на рисунке 2.

3. Вероятность попадания случайной величины Х в интервал (-π/4; π/4) найдем по формуле: P(a.
P(-π/4 < x < π/4) = F(π/4) - F(-π/4) = ½ (1-cos π/4) – 0 = ½ (1-½√2).

Непрерывные случайные величины имеют бесконечное число возможных значений. Поэтому ввести для них ряд распределения нельзя.

Вместо вероятности того, что случайная величина Х примет значение, равное х, т.е. p(X = x), рассматривают вероятность того, что Х примет значение, меньшее, чем х, т.е. Р(Х < х).

Введем новую характеристику случайных величин - функцию распределения и рассмотрим ее свойства.

Функция распределения - самая универсальная характеристика случайной величины. Она может быть определена как для дискретных, так и для непрерывных случайных величин:

F(x) = p(X < x).

Свойства функции распределения.

Функция распределения является неубывающей функцией своего аргумента, т.е. если:

На минус бесконечности функция распределения равна нулю:

На плюс бесконечности функция распределения равна единице:

Вероятность попадания случайной величины на заданный интервал определяется формулой:

Функция f(x), равная производной от функции распределения, называется плотностью вероятности случайной величины Х или плотностью распределения:

Выразим вероятность попадания на участок б до в через f(x). Она равна сумме элементов вероятности на этом участке, т.е. интегралу:

Отсюда можно выразить функцию распределения через плотность вероятности:

Свойства плотности вероятности.

Плотность вероятности является неотрицательной функцией (так как функция распределения является неубывающей функцией):

Плотность вероятно

сти является непрерывной функцией.

Интеграл в бесконечных пределах от плотности вероятности равен 1:

Плотность вероятности имеет размерность случайной величины.

Математическое ожидание и дисперсия непрерывной случайной величины

Смысл математического ожидания и дисперсии остается таким же, как и в случае дискретных случайных величин. Меняется вид формул для их нахождения путем замены:

Тогда получаем формулы для расчета математического ожидания и дисперсии непрерывной случайной величины:

Пример. Функция распределения непрерывной случайной величины задана выражением:

Найти величину a, плотность вероятности, вероятность попадания на участок (0,25-0,5), математическое ожидание и дисперсию.

Так как функция распределения F(x) непрерывна, то при х = 1 ax2 = 1, следовательно, a = 1.

Плотность вероятности находится, как производная от функции распределения:

Вычисление вероятности попадания на заданный участок может быть произведено двумя способами: с помощью функции распределения и с помощью плотности вероятности.

  • 1-й способ. Используем формулу нахождения вероятности через функцию распределения:
  • 2-й способ. Используем формулу нахождения вероятности через плотность вероятности:

Находим математическое ожидание:

Находим дисперсию:

Равномерное распределение

Рассмотрим непрерывную случайную величину Х, возможные значения которой лежат в некотором интервале и равновероятны.

Плотность вероятности такой случайной величины будет иметь вид:

где с - некоторая постоянная.

График плотности вероятности изобразится следующим образом:

Выразим параметр с через б и в. Для этого используем тот факт, что интеграл от плотности вероятности по всей области должен быть равен 1:

Плотность распределения равномерно распределенной случайной величины

Найдем функцию распределения:

Функция распределения равномерно распределенной случайной величины

Построим график функции распределения:

Вычислим математическое ожидание и дисперсию случайной величины, подчиняющейся равномерному распределению.

Тогда среднеквадратичное отклонение будет иметь вид:

Нормальное (Гауссово) распределение

Непрерывная случайная величина Х называется распределенной по нормальному закону с параметрами a, у > 0, если она имеет плотность вероятности:

Кривая распределение случайной величины, имеет вид:

Контрольная работа 2

Задание 1. Составить закон распределения дискретной случайной величины Х, вычислить математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины.

Вариант 1

ОТК проверяет изделия на стандартность. Вероятность того, что изделие стандартно, равно 0,7. Проверено 20 изделий. Найти закон распределения случайной величины Х - числа стандартных изделий среди проверенных. Вычислить математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины.

Вариант 2

В урне 4 шара, на которых указаны очки 2; 4; 5; 5. Наудачу вынимается шар. Найти закон распределения случайной величины Х - числа очков на нем. Вычислить математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины.

Вариант 3

Охотник стреляет по дичи до попадания, но может сделать не более трех выстрелов. Вероятность попадания при каждом выстреле равна 0,6. Составить закон распределения случайной величины Х - числа выстрелов сделанных стрелком. Вычислить математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины.

Вариант 4

Вероятность превысить заданную точность при измерении равна 0,4. Составить закон распределения случайной величины Х - число ошибок при 10 измерениях. Вычислить математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины.

Вариант 5

Вероятность попадания в цель при одном выстреле равна 0,45. Произведено 20 выстрелов. Составить закон распределения случайной величины Х - числа попаданий. Вычислить математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины.

Вариант 6

Изделия некоторого завода содержит 5% брака. Составить закон распределения случайной величины Х - числа бракованных изделий среди пяти взятых на удачу. Вычислить математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины.

Вариант 7

Нужные сборщику детали находятся в трех из пяти ящиков. Сборщик вскрывает ящики до тех пор пока не найдет нужные детали. Составить закон распределения случайной величины Х - числа вскрытых ящиков. Вычислить математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины.

Вариант 8

В урне 3 черных и 2 белых шара. Производится последовательное без возвращения извлечение шаров до появления черного. Составить закон распределения случайной величины Х - числа извлеченных шаров. Вычислить математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины.

Вариант 9

Студент знает 15 вопросов из 20. В билете 3 вопроса. Составить закон распределения случайной величины Х - числа известных студенту вопросов в билете. Вычислить математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины.

Вариант 10

Имеется 3 лампочки, каждая из которых с вероятностью 0,4 имеет дефект. При включении дефектная лампочка перегорает и заменяется другой. Составить закон распределения случайной величины Х - числа испробованных ламп. Вычислить математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины.

Задание 2. Случайная величина Х задана функцией распределения F(X). Найти плотность распределения, математическое ожидание, дисперсию, а также вероятность попадания случайной величины в интервал (б, в). Построить графики функций F(X) и f(X).

Вариант 1

Вариант 2

Вариант 3

Вариант 4

Вариант 5

Вариант 6

Вариант 7

Вариант 8

Вариант 9

Вариант 10

Вопросы к экзамену

Классическое определение вероятности.

Элементы комбинаторики. Размещение. Примеры.

Элементы комбинаторики. Перестановка. Примеры.

Элементы комбинаторики. Сочетания. Примеры.

Теорема о сумме вероятностей.

Теорема умножения вероятностей.

Операции над событиями.

Формула полной вероятности.

Формула Байеса.

Повторение испытаний. Формула Бернулли.

Дискретные случайные величины. Ряд распределения. Пример.

Математическое ожидание дискретной случайной величины.

Дисперсия дискретной случайной величины.

Биномиальное распределение случайной величины.

Распределение Пуассона.

Распределение по закону геометрической прогрессии.

Непрерывные случайные величины. Функция распределения и ее свойства.

Плотность вероятности и ее свойства.

Математическое ожидание непрерывной случайной величины.

Дисперсия непрерывной случайной величины.

Равномерное распределение непрерывной случайной величины.

Нормальный закон распределения.



Поделиться