Функция плотности распределения дискретной случайной величины. Функция распределения вероятностей

Свойства плотности распределения

Для начала напомним, что такое плотность распределения:

Рассмотрим свойства плотности распределения:

Свойство 1: Функция $\varphi (x)$ плотности распределения неотрицательна:

Доказательство.

Мы знаем, что функция распределения $F(x)$ - неубывающая функция. Из определения следует, что $\varphi \left(x\right)=F"(x)$, а производная неубывающей функции -- есть функция неотрицательная.

Геометрически это свойство означает, то график функции $\varphi \left(x\right)$ плотности распределения находится либо выше, либо на самой оси $Ox$ (рис. 1)

Рисунок 1. Иллюстрация неравенства $\varphi (x)\ge 0$.

Свойство 2: Несобственный интеграл от функции плотности распределения пределах от $-\infty $ до $+\infty $ равен 1:

Доказательство.

Вспомним формулу для нахождения вероятности того, что случайная величина попадет интервал $(\alpha ,\beta)$:

Рисунок 2.

Найдем вероятность того, что случайная величина попадет в интервал $(-\infty ,+\infty $):

Рисунок 3.

Очевидно, что случайная величина всегда попадет в интервал $(-\infty ,+\infty $), следовательно, вероятность такого попадания равна единице. Получаем:

Геометрически, второе свойство означает, что площадь криволинейной трапеции, ограниченной графиком функции плотности распределения $\varphi (x)$ и осью абсцисс численно равна единице.

Можно также сформулировать обратное свойство:

Свойство 3: Любая неотрицательная функция $f(x)\ge 0$, удовлетворяющая равенству $\int\limits^{+\infty }_{-\infty }{f\left(x\right)dx}=1$ является функцией плотность распределения некоторой непрерывной случайной величины.

Вероятностный смысл плотности распределения

Придадим переменной $x$ приращение $\triangle x$.

Вероятностный смысл плотности распределения: Вероятность того, что непрерывная случайная величина $X$ примет значения из интервала$(x,x+\triangle x)$, приближенно равна произведению плотности распределения вероятности в точке $x$ на приращение $\triangle x$:

Рисунок 4. Геометрическая иллюстрация вероятностного смысла плотности распределения непрерывной случайной величины.

Примеры решения задач с использованием свойств плотности распределения

Пример 1

Функция плотности распределения вероятности имеет вид:

Рисунок 5.

  1. Найти коэффициент $\alpha $.
  2. Построить график плотности распределения.
  1. Рассмотрим несобственный интеграл $\int\limits^{+\infty }_{-\infty }{\varphi \left(x\right)dx}$, получаем:

Рисунок 6.

Используя свойство 2, получим:

\[-2\alpha =1,\] \[\alpha =-\frac{1}{2}.\]

То есть, функция плотности распределения имеет вид:

Рисунок 7.

  1. Построим её график:

Рисунок 8.

Пример 2

Функция плотности распределения имеет вид $\varphi \left(x\right)=\frac{\alpha }{chx}$

(Напомним, что $chx$ -- гиперболический косинус).

Найти значение коэффициента $\alpha $.

Решение. Используем второе свойство:

\[\int\limits^{+\infty }_{-\infty }{\frac{\alpha }{chx}dx}=1,\] \[\alpha \int\limits^{+\infty }_{-\infty }{\frac{dx}{chx}}=1,\] \[\int\limits^{+\infty }_{-\infty }{\frac{dx}{chx}}={\mathop{lim}_{a\to -\infty } \int\limits^0_a{\frac{dx}{chx}}\ }+{\mathop{lim}_{b\to +\infty } \int\limits^b_0{\frac{dx}{chx}}\ }\]

Так как $chx=\frac{e^x+e^{-x}}{2}$, то

\[\int{\frac{dx}{chx}}=2\int{\frac{dx}{e^x+e^{-x}}}=2\int{\frac{de^x}{{1+e}^{2x}}}=2arctge^x+C\]

\[\int\limits^{+\infty }_{-\infty }{\frac{dx}{chx}}={\mathop{lim}_{a\to -\infty } \left(-2arctge^a\right)\ }+{\mathop{lim}_{b\to +\infty } \left(2arctge^b\right)\ }=\pi \]

Следовательно:

\[\pi \alpha =1,\] \[\alpha =\frac{1}{\pi }\]

Закон распределения вероятностей случайной величины можно задавать с помощью интегральной функции распределения. Интегральной функцией распределения называется функция F(X), для каждого значения х определяющая вероятность того, что случайная величина X примет значение меньшее...
  • Функция распределения вероятностей непрерывной случайной величины
    Функция F(X) существует как для дискретных, так и для непрерывных случайных величин. Отметим важнейшие свойства функции распределения вероятностей непрерывной случайной величины. 1. Для значений функции распределения F(x ) имеет место 2. F(x) - неубывающая функция, т.е. 3. Вероятность...
    (ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА)
  • Непрерывная случайная величина. Плотность распределения
    Определение 3.6. СВ % называется непрерывной, если существует такая функция р(х ) называемая плотностью вероятностей или плотностью распределения вероятностей, что ФР СВ?, равна Если в точке х плотность р(х) непрерывна, то, дифференцируя левую и правую...
  • 4.3. Непрерывная двумерная случайная величина. Совместная плотность распределения
    По аналогии с «-мерной случайной величиной дадим следующее определение. Определение 4.8. Двумерный случайной вектор (?, р) называется непрерывным, если существует такая неотрицательная функция р(х, у), называемая совместной плотностью распределения случайных величин? и р, что Из...
    (ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА ДЛЯ ЭКОНОМИСТОВ)
  • Плотность распределения
    Рис. 1.9. Основные характеристики нормального распределения при разных значениях среднего квадратического отклонения: а - плотность вероятности /(/); б - вероятность безотказной работы р(/); в - интенсивность отказов Х(/) Распределение имеет два независимых параметра: математическое...
    (НАДЕЖНОСТЬ ТЕХНИЧЕСКИХ СИСТЕМ)
  • Закон распределения вероятностей дискретной двумерной случайной величины
    Закономраспределения дискретной двумерной случайной величины называют перечень возможных значений этой величины, т.е. пар чисел (х.,и их вероятностей/? (х.,у.) (?= 1,2.....«; j= 1,2,...,»?). Обычно закон распределения задают в виде таблицы с двойным входом (табл. 2). Первая строка...
    (ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА)
  • Отыскание плотностей вероятности составляющих двумерной случайной величины
    Пусть известна плотность совместного распределения вероятностей системы двух случайных величин. Найдем плотности распределения каждой из составляющих. Найдем сначала плотность распределения составляющей X. Обозначим через Fx(x) функцию распределения составляющей X. По определению...
    (ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА)
  • Результат любого случайного эксперимента можно характеризовать качественно и количественно. Качественный результат случайного эксперимента - случайное событие . Любая количественная характеристика , которая в результате случайного эксперимента может принять одно из некоторого множества значений, - случайная величина. Случайная величина является одним из центральных понятий теории вероятностей.

    Пусть - произвольное вероятностное пространство. Случайной величиной называется действительная числовая функция x =x (w ), w W , такая, что при любом действительном x .

    Событие принято записывать в виде x < x . В дальнейшем случайные величины будем обозначать строчными греческими буквами x , h , z , …

    Случайной величиной является число очков, выпавших при бросании игральной кости, или рост случайно выбранного из учебной группы студента. В первом случае мы имеем дело с дискретной случайной величиной (она принимает значения из дискретного числового множества M= {1, 2, 3, 4, 5, 6} ; во втором случае - с непрерывной случайной величиной (она принимает значения из непрерывного числового множества - из промежутка числовой прямой I =).

    Каждая случайная величина полностью определяется своей функцией распределения .

    Если x .- случайная величина, то функция F (x ) = F x (x ) = P (x < x ) называется функцией распределения случайной величины x . Здесь P (x < x ) - вероятность того, что случайная величина x принимает значение, меньшее x .

    Важно понимать, что функция распределения является “паспортом” случайной величины: она содержит всю информация о случайной величине и поэтому изучение случайной величины заключается в исследовании ее функции распределения, которую часто называют просто распределением .

    Функция распределения любой случайной величины обладает следующими свойствами:

    Если x - дискретная случайная величина, принимающая значения x 1 < x 2 < … < x i < … с вероятностями p 1 < p 2 < … < p i < …, то таблица вида

    x 1 x 2 x i
    p 1 p 2 p i

    называется распределением дискретной случайной величины .

    Функция распределения случайной величины, с таким распределением, имеет вид

    У дискретной случайной величины функция распределения ступенчатая. Например, для случайного числа очков, выпавших при одном бросании игральной кости, распределение, функция распределения и график функции распределения имеют вид:

    1 2 3 4 5 6
    1/6 1/6 1/6 1/6 1/6 1/6

    Если функция распределения F x (x ) непрерывна, то случайная величина x называется непрерывной случайной величиной.

    Если функция распределения непрерывной случайной величины дифференцируема , то более наглядное представление о случайной величине дает плотность вероятности случайной величины p x (x ), которая связана с функцией распределения F x (x ) формулами

    и .

    Отсюда, в частности, следует, что для любой случайной величины .

    При решении практических задач часто требуется найти значение x , при котором функция распределения F x (x ) случайной величины x принимает заданное значение p , т.е. требуется решить уравнение F x (x ) = p . Решения такого уравнения (соответствующие значения x ) в теории вероятностей называются квантилями.

    Квантилью x p (p -квантилью, квантилью уровня p ) случайной величины , имеющей функцию распределения F x (x ), называют решение x p уравнения F x (x ) = p , p (0, 1). Для некоторых p уравнение F x (x ) = p может иметь несколько решений, для некоторых - ни одного. Это означает, что для соответствующей случайной величины некоторые квантили определены неоднозначно, а некоторые кванитили не существуют.

    Непрерывная случайная величина может быть задана не только с помощью функции распределения. Введем понятие плотности вероятности непрерывной случайной величины.

    Рассмотрим вероятность попадания непрерывной случайной величины на интервал [х , х + Δх ]. Вероятность такого события

    P (х X х + Δх ) = F (х + Δх ) – F (х ),

    т.е. равна приращению функции распределения F (х ) на этом участке. Тогда вероятность, приходящаяся на единицу длины, т.е. средняя плотность вероятности на участке от х до х + Δх , равна

    Переходя к пределу Δх → 0, получим плотность вероятности в точке х :

    представляющую производную функции распределения F (х ). Напомним, что для непрерывной случайной величины F (х ) – дифференцируемая функция.

    Определение. Плотностью вероятности (плотностью распределения ) f (x ) непрерывной случайной величины Х называется производная ее функции распределения

    f (x ) = F ′(x ). (4.8)

    Про случайную величину Х говорят, что она имеет распределение с плотностью f (x ) на определенном участке оси абсцисс.

    Плотность вероятности f (x ), как и функция распределения F (x ) является одной из форм закона распределения. Но в отличие от функции распределения она существует только для непрерывных случайных величин.

    Плотность вероятности иногда называют дифференциальной функцией или дифференциальным законом распределения . График плотности вероятности называется кривой распределения .

    Пример 4.4. По данным примера 4.3 найти плотность вероятности случайной величины Х .

    Решение. Будем находить плотность вероятности случайной величины как производную от ее функции распределения f (x ) = F "(x ).

    Отметим свойства плотности вероятности непрерывной случайной величины.

    1. Плотность вероятности – неотрицательная функция , т.е.

    Геометрически вероятность попадания в интервал [α , β ,] равна площади фигуры, ограниченной сверху кривой распределения и опирающейся на отрезок [α , β ,] (рис.4.4).

    Рис. 4.4 Рис. 4.5

    3. Функция распределения непрерывной случайной величины может быть выражен через плотность вероятности по формуле :

    Геометрически свойства 1 и 4 плотности вероятности означают, что ее график – кривая распределения – лежит не ниже оси абсцисс, а полная площадь фигуры, ограниченной кривой распределения и осью абсцисс, равна единице.

    Пример 4.5. Функция f (x ) задана в виде:

    Найти: а) значение А ; б) выражение функции распределения F (х ); в) вероятность того, что случайная величина Х примет значение на отрезке .

    Решение. а) Для того, чтобы f (x ) была плотностью вероятности некоторой случайной величины Х , она должна быть неотрицательна, следовательно, неотрицательным должно быть и значение А . С учетом свойства 4 находим:

    , откуда А = .

    б) Функцию распределения находим, используя свойство 3 :

    Если x ≤ 0, то f (x ) = 0 и, следовательно, F (x ) = 0.

    Если 0 < x ≤ 2, то f (x ) = х /2 и, следовательно,

    Если х > 2, то f (x ) = 0 и, следовательно

    в) Вероятность того, что случайная величина Х примет значение на отрезке находим, используя свойство 2 .

    Плотность распределения вероятностей дискретной случайной величины

    Пусть случайная величина принимает значения с вероятностями, . Тогда ее функция распределения вероятностей

    где - функция единичного скачка. Определить плотность вероятности случайной величины по ее функции распределения можно с учетом равенства. Однако при этом возникают математические сложности, связанные с тем, что функция единичного скачка, входящая в (34.1), имеет разрыв первого рода при. Поэтому в точке не существует производная функции.

    Для преодоления этой сложности вводится -функция. Функцию единичного скачка можно представить через -функцию следующим равенством:

    Тогда формально производная

    и плотность вероятности дискретной случайной величины определяется из соотношения (34.1) как производная функции:

    Функция (34.4) обладает всеми свойствами плотности вероятности. Рассмотрим пример. Пусть дискретная случайная величина принимает значения с вероятностями, и пусть, . Тогда вероятность - того, что случайная величина примет значение из отрезка может быть вычислена, исходя из общих свойств плотности по формуле:

    поскольку особая точка - функции, определяемая условием, находится внутри области интегрирования при, а при особая точка находится вне области интегрирования. Таким образом,

    Для функции (34.4) также выполняется условие нормировки:

    Отметим, что в математике запись вида (34.4) считается некорректной (неправильной), а запись (34.2) - корректной. Это обусловлено тем, что -функция при нулевом аргументе, и говорят, что не существует. С другой стороны, в (34.2) -функция содержится под интегралом. При этом правая часть (34.2) - конечная величина для любого, т.е. интеграл от -функции существует. Несмотря на это в физике, технике и других приложениях теории вероятностей часто используется представление плотности в виде (34.4), которое, во-первых, позволяет получать верные результаты, применяя свойства - функции, и во-вторых, имеет очевидную физическую интерпретацию.

    Примеры плотностей и функций распределения вероятностей

    35.1. Случайная величина называется равномерно распределенной на отрезке, если ее плотность распределения вероятностей

    где - число, определяемое из условия нормировки:

    Подстановка (35.1) в (35.2) приводит к равенству, решение которого относительно имеет вид: .

    Функция распределения вероятностей равномерно распределенной случайной величины может быть найдена по формуле (33.5), определяющей через плотность:

    На рис. 35.1 представлены графики функций и равномерно распределенной случайной величины.

    Рис. 35.1. Графики функции и плотности распределения


    равномерно распределенной случайной величины.

    35.2. Случайная величина называется нормальной (или гауссовой), если ее плотность распределения вероятностей:

    где, - числа, называемые параметрами функции. При функция принимает свое максимальное значение: . Параметр имеет смысл эффективной ширины. Кроме этой геометрической интерпретации параметры, имеют и вероятностную трактовку, которая будет рассмотрена в последующем.

    Из (35.4) следует выражение для функции распределения вероятностей

    где - функция Лапласа. На рис. 35.2 представлены графики функций и нормальной случайной величины. Для обозначения того, что случайная величина имеет нормальное распределение с параметрами и часто используется запись.


    Рис. 35.2. Графики плотности и функции распределения

    нормальной случайной величины.

    35.3. Случайная величина имеет плотность распределения вероятностей Коши, если

    Этой плотности соответствует функция распределения

    35.4. Случайная величина называется распределенной по экспоненциальному закону, если ее плотность распределения вероятностей имеет вид:

    Определим ее функцию распределения вероятностей. При из (35.8) следует. Если, то

    35.5. Релеевское распределение вероятностей случайной величины определяется плотностью вида

    Этой плотности соответствует функция распределения вероятностей при и равная

    35.6. Рассмотрим примеры построения функции распределения и плотности дискретной случайной величины. Пусть случайная величина - это число успехов в последовательности из независимых испытаний. Тогда случайная величина принимает значения, с вероятностью, которая определяется формулой Бернулли:

    где, - вероятности успеха и неуспеха в одном опыте. Таким образом, функция распределения вероятностей случайной величины имеет вид

    где - функция единичного скачка. Отсюда плотность распределения:

    где - дельта-функция.



    Поделиться