Множество замкнуто относительно операции. Открытые и замкнутые множества Открытое и замкнутое числовые множества

Счетное множество- есть бесконечное множество элементы которого можно пронумеровать натуральными числами, или это множество, равномощное множеству натуральных чисел.

Иногда счётными называются множества равномощные любому подмножеству множества натуральных чисел, то есть все конечные множества тоже считаются счётными.

Счётное множество является «наименьшим» бесконечным множеством, то есть в любом бесконечном множестве найдётся счётное подмножество.

Свойства:

1.Любое подмножество счётного множества не более чем счётно.

2.Объединение конечного или счётного числа счётных множеств счётно.

3.Прямое произведение конечного числа счётных множеств счётно.

4.Множество всех конечных подмножеств счётного множества счётно.

5.Множество всех подмножеств счётного множества континуально и, в частности, не является счётным.

Примеры счетных множеств:

Простые числа Натуральные числа, Целые числа, Рациональные числа, Алгебраические числа, Кольцо периодов, Вычислимые числа, Арифметические числа.

Теория вещественных чисел.

(Вещественные = действительные – памятка для нас, пацаны.)

Множество R содержит рациональные и иррациональные числа.

Действительные числа, не являющиеся рациональными, называются иррациональными

Теорема: Не существует рационального числа, квадрат которого равен числу 2

Рациональные числа: ½, 1/3, 0.5, 0.333.

Иррациональные числа: корень из 2=1,4142356… , π=3.1415926…

Множество R действительных чисел обладает следующими свойствами:

1. Оно упорядоченное: для любых двух различных чисел a и b имеет место одно из двух соотношений a либо a>b

2. Множество R плотное: между двумя различными числами a и b содержится бесконечное множество действительных чисел х, т.е чисел, удовлетворяющих неравенству а

Там еще 3-е свойство, но оно огромное, сорри

Ограниченные множества. Свойства верхних и нижних границ.

Ограниченное множество - множество, которое в определенном смысле имеет конечный размер.

ограниченным сверху , если существует число , такое что все элементы не превосходят :

Множество вещественных чисел называется ограниченным снизу , если существует число ,

такое что все элементы не меньше :

Множество , ограниченное сверху и снизу, называется ограниченным .

Множество , не являющееся ограниченным, называется неограниченным . Как следует из определения, множество не ограничено тогда и только тогда, когда оно не ограничено сверху или не ограничено снизу .

Числовая последовательность. Предел последовательности. Лемма о двух милиционерах.

Числовая последовательность - это последовательность элементов числового пространства.

Пусть - это либо множество вещественных чисел , либо множество комплексных чисел . Тогда последовательность элементов множества называется числовой последовательностью.

Пример.

Функция является бесконечной последовательностью рациональных чисел. Элементы этой последовательности начиная с первого имеют вид .

Предел последовательности - это объект, к которому члены последовательности приближаются с ростом номера. В частности, для числовых последовательностей предел - это число, в любой окрестности которого лежат все члены последовательности начиная с некоторого.

Теорема о двух милиционерах…

Если функция такая, что для всех в некоторой окрестности точки , причем функции и имеют одинаковый предел при , то существует предел функции при , равный этому же значению, то есть

Множество натуральных чисел образуют числа 1, 2, 3, 4, ..., используемые для счёта предметов. Множество всех натуральных чисел принято обозначать буквой N :

N = {1, 2, 3, 4, ..., n , ...} .

Законы сложения натуральных чисел

1. Для любых натуральных чисел a и b верно равенство a + b = b + a . Это свойство называют переместительным (коммутативным) законом сложения.

2. Для любых натуральных чисел a , b , c верно равенство (a + b ) + c = a + (b + c ) . Это свойство называют сочетальным (ассоциативным) законом сложения.

Законы умножения натуральных чисел

3. Для любых натуральных чисел a и b верно равенство ab = ba . Это свойство называют переместительным (коммутативным) законом умножения.

4. Для любых натуральных чисел a , b , c верно равенство (a b )c = a (b c ) . Это свойство называют сочетальным (ассоциативным) законом умножения.

5. При любых значениях a , b , c верно равенство (a + b )c = ac + bc . Это свойство называют распределительным (дистрибутивным) законом умножения (относительно сложения).

6. При любых значениях a верно равенство a *1 = a . Это свойство называют законом об умножении на единицу.

Результатом сложения или умножения двух натуральных чисел всегда является натуральное число. Или, говоря иначе, эти операции можно выполнить, оставаясь во множестве натуральных чисел. Относительно вычитания и деления этого сказать нельзя: так, из числа 3 нельзя, оставаясь во множестве натуральных чисел, вычесть число 7; число 15 нельзя разделить на 4 нацело.

Признаки делимости натуральных чисел

Делимость суммы. Если каждое слагаемое делится на некоторое число, то и сумма делится на это число.

Делимость произведения. Если в произведении хотя бы один из сомножителей делится нацело на некоторое число, то и произведение делится на это число.

Эти условия, как для суммы, так и для произведения, являются достаточными, но не необходимыми. Например, произведение 12*18 делится на 36, хотя ни 12, ни 18 на 36 не делятся.

Признак делимости на 2. Для того, чтобы натуральное число делилось на 2, необходимо и достаточно, чтобы его последняя цифра была чётной.

Признак делимости на 5. Для того, чтобы натуральное число делилось на 5, необходимо и достаточно, чтобы его последняя цифра была либо 0, либо 5.

Признак делимости на 10. Для того, чтобы натуральное число делилось на 10, необходимо и достаточно, чтобы цифра единиц была 0.

Признак делимости на 4. Для того, чтобы натуральное число, содержащее не менее трёх цифр, делилось на 4, необходимо и достаточно, чтобы последние цифры были 00, 04, 08 или двузначное число, образованное последними двумя цифрами данного числа, делилось на 4.

Признак делимости на 2 (на 9). Для того, чтобы натуральное число делилось на 3 (на 9), необходимо и достаточно, чтобы сумма его цифр делилась на 3 (на 9).

Множество целых чисел

Рассмотрим числовую прямую с началом отсчёта в точке O . Координатой числа нуль на ней будет точка O . Числа, расположенные на числовой прямой в заданном направлении, называют положительными числами. Пусть на числовой прямой задана точка A с координатой 3. Она соответствует положительному числу 3. Отложим теперь три раза единичный отрезок от точки O , в направлении, противоположном заданному. Тогда получим точку A" , симметричную точке A относительно начала координат O . Координатой точки A" будет число - 3. Это число, противоположное числу 3. Числа, расположенные на числовой прямой в направлении, противоположном заданному, называют отрицательными числами.

Числа, противоположные натуральным, образуют множество чисел N" :

N" = {- 1, - 2, - 3, - 4, ...} .

Если объединить множества N , N" и одноэлементное множество {0} , то получим множество Z всех целых чисел:

Z = {0} ∪ N N" .

Для целых чисел верны все перечисленные выше законы сложения и умножения, которые верны для натуральных чисел. Кроме того, добавляются следующие законы вычитания:

a - b = a + (- b ) ;

a + (- a ) = 0 .

Множество рациональных чисел

Чтобы сделать выполнимой операцию деления целых чисел на любое число, не равное нулю, вводятся дроби:

Где a и b - целые числа и b не равно нулю.

Если к множеству целых чисел присоединить множество всех положительных и отрицательных дробей, то получается множество рациональных чисел Q :

.

При этом каждое целое число является также рациональным числом, так как, например, число 5 может быть представлено в виде , где числитель и знаменатель - целые числа. Это бывает важно при операциях над рациональными числами, из которых одно может быть целым числом.

Законы арифметических действий над рациональными числами

Основное свойство дроби. Если числитель и знаменатель данной дроби умножить или разделить на одно и то же натуральное число, то получится дробь, равная данной:

Это свойство используется при сокращении дробей.

Сложение дробей. Сложение обыкновенных дробей определяется следующим образом:

.

То есть, для сложения дробей с разными знаменателями дроби приводятся к общему знаменателю. На практике при сложении (вычитании) дробей с разными знаменателями дроби приводятся к наименьшему общему знаменателю. Например, так:

Для сложения дробей с одинаковыми числителями достаточно сложить числители, а знаменатель оставить прежним.

Умножение дробей. Умножение обыкновенных дробей определяется следующим образом:

То есть, для умножения дроби на дробь нужно числитель первой дроби умножить на числитель второй дроби и записать произведение в числитель новой дроби, а знаменатель первой дроби умножить на знаменатель второй дроби и записать произведение в знаменатель новой дроби.

Деление дробей. Деление обыкновенных дробей определяется следующим образом:

То есть, для деления дроби на дробь нужно числитель первой дроби умножить на знаменатель второй дроби и произведение записать в числитель новой дроби, а знаменатель первой дроби умножить на числитель второй дроби и произведение записать в знаменатель новой дроби.

Возведение дроби в степень с натуральным показателем. Эта операция определяется следующим образом:

То есть, для возведения дроби в степень числитель возводится в эту степень и знаменатель возводится в эту степень.

Периодические десятичные дроби

Теорема. Любое рациональное число можно представить в виде конечной или бесконечной периодической дроби.

Например,

.

Последовательно повторяющаяся группа цифр после запятой в десятичной записи числа называется периодом, а конечная или бесконечная десятичная дробь, имеющая такой период в своей записи, называется периодической.

При этом любую конечную десятичную дробь считают бесконечной периодической дробью с нулём в периоде, например:

Результат сложения, вычитания, умножения и деления (кроме деления на нуль) двух рациональных чисел - также рациональное число.

Множество действительных чисел

На числовой прямой, которую мы рассмотрели в связи с множеством целых чисел, могут быть точки, не имеющие координат в виде рационального числа. Так, не существует рационального числа, квадрат которого равен 2. Следовательно, число не является рациональным числом. Так же не существует рациональных чисел, квадраты которых равны 5, 7, 9. Следовательно, иррациональными являются числа , , . Иррациональным является и число .

Никакое иррациональное число не может быть представлено в виде периодической дроби. Их представляют в виде непериодических дробей.

Объединение множеств рациональных и иррациональных чисел представляет собой множество действительных чисел R .

Определение 19. МножествоЕ называетсяоткрытым , если все его точки являются внутренними, то есть если оно не содержит своих граничных точек.

Определение 20. МножествоЕ называетсязамкнутым , если оно содержит все свои предельные точки, то есть. (Иначе,
).

Пример 1. Любоеn -мерный интеграл – открытое множество. Любой отрезок – замкнутое множество.

Следует обратить особое внимание на то что, классы замкнутых и открытых множеств не охватывают вместе всех множеств, кроме того, эти классы пересекаются. Существуют множества, которые не являются ни замкнутыми, ни открытыми, а так же множества, которые одновременно являются и замкнутыми, и открытыми.

Пример 2. Пустое множество следует считать замкнутым, хотя оно в то же время является и открытым. МножествоR действительных чисел одновременно является и замкнутым, и открытым.

Множество Q рациональных чисел ни замкнуто, ни открыто. Линейный полуинтервал - ни замкнутое, ни открытое множество.

Теорема 3. Любой шарS (a , r ) - открытое множество.

Доказательство:

Пусть . Возьмём
. Докажем, что шар
(это будет означать, что любая точка шара
- внутренняя, то есть
- открытое множество). Возьмём. Докажем, что
, для этого оценим расстояние
:

Следовательно,
, то есть
, то естьS (a , r ) - открытое множество.

Теорема 4. Производное множество
любого множестваE замкнуто.

Доказательство:

Пусть
. Тогдав любой окрестности
точкисуществует хотя бы одна точкамножества
, отличная от. Так как- предельная точка множестваE , то в любой её окрестности (в том числе сколь угодно малой, содержащейся в
) существует хотя бы одна точкамножестваE , отличная от точки. Таким образом, по определению точкаявляется предельной точкой для множестваE . Итак,
, что по определению означает замкнутость множестваE .

Следует заметить, что в частном случае производное множество
может оказаться пустым.

Свойства открытых и замкнутых множеств

Теорема 5. Объединение любого конечного числа замкнутых множеств является замкнутым множеством.

Доказательство:

Пусть
- замкнутые множества. Докажем, что
- замкнутое множество.

Пусть - предельная точка множества

. Тогда- предельная точка хотя бы одного из множеств
(доказывается от противного). Так как- замкнутое множество, то
. Но тогда
. Итак, любая предельная точка множества
ему принадлежит, то есть
замкнуто.

Теорема 6. Пересечение любого числа замкнутых множеств является замкнутым множеством.

Доказательство:

Пусть
- любая совокупность замкнутых множеств. Докажем, что
- замкнутое множество.

Пусть - предельная точка множества

. Тогда по теореме 1 в любой окрестности

. Но все точки множества
являются и точками множеств
. Следовательно, в
содержится бесконечно много точек из
. Но все множествазамкнуты, поэтому

и
, то есть
замкнуто.

Теорема 7. Если множествоF замкнуто, то его дополнениеCF открыто.

Доказательство:

Пусть . Так как
замкнуто, тоне является его предельной точкой (
). Но это означает, что существует окрестность
точки, не содержащая точек множестваF , то есть
. Тогда
и поэтому- внутренняя точка множества
. Так как- произвольная точка множестваCF , то все точки этого множества являются внутренними, то естьCF открыто.

Теорема 8. Если множествоG открыто, то его дополнениеCG замкнуто.

Доказательство:

Пусть вместе с некоторой окрестностью. Следовательно,не является предельной точкой множестваCG . Итак,
не является предельной точкой для
, то есть
содержит все свои предельные точки. По определению,
замкнуто.

Теорема 9. Объединение любого числа открытых множеств является открытым множеством.

Доказательство:

Пусть
- произвольная совокупность открытых множестви
. Докажем, что- открытое множество. Имеем:

.

Так как множества открыты
, то по теореме 8 множества
замкнуты
. Тогда по теореме 6 их пересечение

открыто.

Теорема 10. Пересечение любого конечного числа открытых множеств является открытым множеством.

Доказательство:

Пусть
- пересечение любого конечного числа открытых множеств
. Докажем, что- открытое множество. Имеем:

.

Так как множества открыты
, то по теореме 8 множества
замкнуты
. Тогда по теореме 5 их объединение

замкнуто. По теореме 7 множество
открыто.

Определение: Множество A называется замкнутым относительно операции *, если результат применения этой операции к любым элементам множества A также является элементом множества A . (Если для любых a,b Î A , a *b Î A , то множество A замкнуто относительно операции *)

Для доказательства замкнутости множества относительно операции необходимо либо непосредственным перебором всех случаев убедиться в этом (пример 1б), либо провести рассуждение в общем виде (пример 2). Чтобы опровергнуть замкнутость, достаточно привести один пример, демонстрирующий нарушение замкнутости (пример 1а).

Пример 1 .

Пусть A = {0;1}.

а) В качестве операции * возьмем арифметическую операцию сложения (+). Исследуем множество A на замкнутость относительно операции сложения (+):

0 + 1 = 1 Î A ; 0 + 0 = 0 Î A ; 1 + 0 = 1Î A ; 1 + 1 = 2 Ï A .

Имеем, что в одном случае (1+1) результат применения операции (+) к элементам множества A не принадлежит множеству A . На основании этого делаем вывод о том, что множество A не является замкнутым относительно операции сложения.

б) Теперь в качестве операции * возьмем операцию умножения (×).

0×1 = 0 Î A ; 0×0 = 0 Î A ; 1×0 = 0 Î A ; 1×1 = 1 Î A .

Для любых элементов множества A результат применения операции умножения также является элементом множества A . Следовательно, A замкнуто относительно операции умножения.

Пример 2 .

Исследовать на замкнутость относительно четырех арифметических операций множество целых чисел, кратных 7.

Z 7 = {7n , n Î Z } – множество чисел, кратных семи.

Очевидно, что Z 7 – незамкнуто относительно операции деления, так как, например,

7 Î Z 7 , 14 Î Z 7 , но 7: 14 = ½ Ï Z 7 .

Докажем замкнутость множества Z 7 относительно операции сложения. Пусть m , k – произвольные целые числа, тогда 7m Î Z 7 и 7k Î Z 7 . Рассмотрим сумму 7m + 7 k = 7∙(m + k ).

Имеем m Î Z , k Î Z . Z – замкнуто относительно сложения Þ m + k = l – целое число, то есть l Î Z Þ 7l Î Z 7 .

Таким образом, для произвольных целых чисел m и k доказали, что (7m + 7 k) Î Z 7 . Следовательно, множество Z 7 замкнуто относительно сложения. Аналогично доказывается замкнутость относительно операций вычитания и умножения (проделайте это самостоятельно).


1.

а) множество четных чисел (иначе: множество целых чисел, делящихся на 2(Z 2));

б) множество отрицательных целых чисел (Z –);

в) A = {0;1};

г) C = {–1;0;1}.

2. Исследовать на замкнутость относительно арифметических операций сложения, вычитания, умножения и деления следующие множества:

а) множество нечетных чисел;

б) множество натуральных чисел, последняя цифра которых нуль;

в) B = {1};

г) D = {–1;1}.

3.

а) множество N натуральных чисел;

б) множество Q рациональных чисел;

в) D = {–1;1};

г) множество нечетных чисел.

4. Исследовать на замкнутость относительно операции возведения в степень следующие множества:

а) множество Z целых чисел;

б) множество R действительных чисел;

в) множество четных чисел;

г) C = {–1; 0; 1}.

5. Пусть множество G , состоящее только из рациональных чисел, замкнуто относительно сложения.

а) Укажите какие-либо три числа, содержащиеся во множестве G, если известно, что оно содержит число 4.

б) Докажите, что множество G содержит число 2, если оно содержит числа 5 и 12.

6. Пусть множество K , состоящее только из целых чисел, замкнуто относительно вычитания.

а) Укажите какие-либо три числа, содержащиеся во множестве K , если известно, что оно содержит число 5.

б) Докажите, что множество K содержит число 6, если оно содержит числа 7 и 3.

7. Приведите пример множества, состоящего из натуральных чисел и незамкнутого относительно операции:

а) сложения;

б) умножения.

8. Приведите пример множества, содержащего число 4 и замкнутого относительно операций:

а) сложения и вычитания;

Типы множеств вещественной прямой

Положение точки относительно множества A

Односторонние окрестности

Топология вещественной прямой

Числовые множества

Основные множества чисел это отрезок и интервал (a; b).

Числовое множество A называется ограниченным сверху , если существует такое число M, что a £ M для любого a Î A. Число M в этом случае называется верхней гранью или мажорантой множества.

Супремумом множества A, sup A называется …

… наименьшая из его мажорант;

… число M такое, что a £ M для любого a Î A и в любой окрестности M есть элемент множества A;

Аналогично вводятся понятия «ограниченное снизу », «миноранта » (нижняя грань), и «инфимум » (точная нижняя грань).

Полнота вещественной прямой (равносильные формулировки)

1. Свойство вложенных отрезков. Пусть заданы отрезки É É … É É … Они имеют хотя бы одну общую точку. Если длины отрезков можно выбрать сколь угодно малыми, то такая точка единственна.

Следствие: метод дихотомии для теорем существования . Пусть задан отрезок . Делим его пополам и выбираем одну из половин (так, чтобы она обладала нужным свойством). Эту половину обозначим через . Продолжаем этот процесс неограниченно. Получим систему вложенных отрезков, длины которых приближаются к 0. Значит, они имеют ровно одну общую точку. Осталось доказать, что она и будет искомой.

2. Для любого непустого ограниченного сверху множества существует супремум.

3. Для любых двух непустых множеств, одно из которых лежит левее другого, существует разделяющая их точка (существование сечений).

Окрестности:

U(x) = (a, b), a < x < b; Ue(x) = (x – e; x + e), e > 0;

U(¥) = (–¥; a) U (b; ¥), Ue(¥) = (–¥; –e) U (e; +¥), e > 0;

U(+¥) = (e; +¥); U(–¥) = (–¥; –e).

Проколотые окрестности:

Ǔ(x) = (a, x) U (x, b) = U(x) \ {x}; Ǔe(x) = (x – e; x) U (x; x + e) = Ue(x) \ {x}

Ue–(x) = (x – e; x], e > 0; Ue+(x) = }

Поделиться