Свойства и законы арифметических действий. Законы арифметических действий презентация к уроку по алгебре (5 класс) на тему

18-19.10.2010 г.

Тема : «ЗАКОНЫ АРИФМЕТИЧЕСКИХ ДЕЙСТВИЙ»

Цель: познакомить учащихся с законами арифметических действий.

Задачи урока:

    раскрыть на конкретных примерах переместительный и сочетательный законы сложения и умножения учить их применять при упрощении выражений;

    формировать умения упрощать выражения;

    работать над развитием логического мышления и речи детей;

    воспитывать самостоятельность, любознательность, интерес к предмету.

УУД: умение действовать со знаково-символическими символами,

умение выбирать основания, критерии для сравнения, сопоставления, оценки и классификации объектов.

Оборудование: учебник, ТПО,презентация

Рис. 30 Рис. 31

Используя рисунок 30, объясните, почему справедливо равенство

а + b = b + а.

Это равенство выражает известное вам свойство сложения. Постарайтесь вспомнить какое.

Проверьте себя:

От перемены мест слагаемых сумма не меняется

Это свойство - переместительный закон сложения.

Какое равенство можно записать по рисунку 31? Какое свойство сложения выражает это равенство?

Проверьте себя.

Из рисунка 31 следует, что (а + b) + с = а + (b + с): если к сумме двух слагаемых прибавить третье слагаемое, то получится то же число, что и от прибавления к первому слагаемому суммы второго и третьего слагаемых.

Вместо (а + b) + с, так же как и| вместо а + (b + с), можно писать просто а + b + с.

Это свойство - сочетательный закон сложения.

В математике законы арифметических действий записывают как в| словесной форме, так и в виде равенств с использованием букв:

Объясните, как, используя законы сложения, можно упростить следующие вычисления, и выполните их:

212. а) 48 + 56 + 52; д) 25 + 65 + 75;

б) 34 + 17 + 83; е) 35 + 17 + 65 + 33;

в) 56 + 24 + 38 + 62; ж) 27 + 123 + 16 + 234;

г) 88 + 19 + 21 + 12; з) 156 + 79 + 21 + 44.

213. Используя рисунок 32, объясните, почему справедливо равенство ab = b а.

Вы догадались, какой закон иллюстрирует это равенство? Можно ли утверждать, что для

умножения справедливы те же законы, что и для сложения? Постарайтесь их сформулировать,

а затем проверьте себя:

Используя законы умножения, значения следующих выражений вычислите устно:

214. а) 76 · 5 · 2; в) 69 · 125 · 8; д) 8 · 941 · 125; В С

б) 465 · 25 · 4; г) 4 · 213 · 5 · 5; е) 2 · 5 · 126 ·4 · 25.

215. Найдите площадь прямоугольника ABCD (рис. 33) двумя способами.

216. Используя рисунок 34, объясните, почему справедливо равенство: а(b + с) = ab + ас.

Рис. 34 Какое свойство арифметических действий оно выражает?

Проверьте себя. Это равенство иллюстрирует следующее свойство: при умножении числа на сумму можно умножить это число на каждое слагаемое и полученные результаты сложить.

Можно это свойство сформулировать и по-другому: сумму двух или нескольких произведений, содержащих одинаковый множитель, можно заменить произведением этого множителя на сумму остальных множителей.

Это свойство еще один закон арифметических действий - распределительный . Как видим, словесная формулировка этого закона очень громоздкая, и математический язык - это то средство, которое делает ее краткой и понятной:

Подумайте, как устно выполнить вычисления в заданиях № 217 – 220 и выполните их.

217. а) 15 · 13; б) 26 · 22; в) 34 · 12; г) 27 · 21.

218. а) 44 · 52; б) 16 · 42; в) 35 · 33; г) 36 · 26.

219. а) 43 · 16 + 43 · 84; д) 62 · 16 + 38 · 16;

б) 85 · 47 + 53 · 85; е) 85 · 44 + 44 · 15;

в) 54 · 60 + 460 · 6. ж) 240 · 710 + 7100 · 76;

г) 23 · 320 + 230 · 68; з) 38 · 5800 + 380 · 520.

220. а) 4 · 63 + 4 · 79 + 142 · 6; в) 17 · 27 + 23 · 17 + 50 · 19;

б) 7 · 125 + 3 · 62 + 63 · 3; г) 38 · 46 + 62 · 46 + 100 · 54.

221. Сделайте в тетради рисунок, подтверждающий равенство а ( b - с) = а b - ас

222. Вычислите устно, применив распределительный закон: а) 6 · 28; б) 18 · 21; в) 17 · 63; г) 19 · 98.

223. Вычислите устно: а) 34 · 84 – 24 · 84; в) 51· 78 – 51· 58;

б) 45 · 40 – 40 ·25; г) 63 · 7 – 7· 33

224 Вычислите: а) 560 · 188 – 880 · 56; в) 490 · 730 – 73 · 900;

б) 84 · 670 – 640 · 67; г) 36 · 3400 – 360 · 140.

Вычислите устно, используя известные вам приемы:

225. а) 13 · 5 + 71 · 5; в) 87 · 5 – 23 · 5; д) 43 · 25 + 25 · 17;

б) 58 · 5 – 36 · 5; г) 48 · 5 + 54 · 5; е) 25 · 67 – 39 · 25.

226. Не выполняя вычислений, сравните значения выражений:

а) 258 · (764 + 548) и 258 · 764 + 258 · 545; в) 532 · (618 – 436) и 532 · 618 –532 · 436;

б) 751· (339 + 564) и 751· 340 + 751· 564; г) 496 · (862 – 715) и 496 · 860 – 496 · 715.

227. Заполните таблицу:

Надо ли было производить вычисления, чтобы заполнить вторую строчку?

228. Как изменится данное произведение, если множители изменить следующим образом:

229. Запишите, какие натуральные числа расположены на координатном луче:

а) левее числа 7; в) между числами 2895 и 2901;

б) между числами 128 и 132; г) правее числа 487, но левее числа 493.

230. Вставьте знаки действий, чтобы получилось верное равенство: а) 40 + 15 ? 17 = 72; в) 40 ? 15 ? 17 = 8;

б) 40 ? 15 ? 17 = 42; г) 120 ? 60 ? 60 = 0.

231 . В одной коробке носки голубые, а в другой - белые. Голубых носков на 20 пар больше, чем белых, а всего в двух коробках 84 лары носков. Сколько пар носков каждого цвета?

232 . В магазине имеется крупа трех видов: гречка, перловка и рис, всего 580 кг. Если бы продали 44 кг гречки, 18 кг перловки и 29 риса, то масса круп всех видов стала бы одинаковой. Сколько кил граммов крупы каждого вида имеется в магазине.

Цель: проверить сформированность умений выполнять вычисления по формулам; познакомить детей с переместительным, сочетательным и распределительным законами арифметических действий.

  • познакомить с буквенной записью законов сложения и умножения; научить применять законы арифметических действий для упрощения вычислений и буквенных выражений;
  • развивать логическое мышление, навыки умственного труда, волевые привычки, математическую речь, память, внимание, интерес к математике, практичность;
  • воспитывать уважительное отношение друг к другу, чувство товарищества, доверие.

Тип урока: комбинированный.

  • проверка ранее усвоенных знаний;
  • подготовка учащихся к усвоению нового материала
  • изложение нового материала;
  • восприятие и осознание учащимися нового материала;
  • первичное закрепление изученного материала;
  • подведение итогов урока и постановка домашнего задания.

Оборудование: компьютер, проектор, презентация.

План:

1. Организационный момент.
2. Проверка ранее изученного материала.
3. Изучение нового материала.
4. Первичная проверка усвоения знаний (работа с учебником).
5. Контроль и самопроверка знаний (самостоятельная работа).
6. Подведение итогов урока.
7. Рефлексия.

Ход урока

1. Организационный момент

Учитель: Добрый день, дети! Наш урок мы начинаем со стихотворения – напутствия. Обратите внимание на экран. (1 слайд) . Приложение 2 .

Математика, друзья,
Абсолютно всем нужна.
На уроках работай старательно,
И успех тебя ждёт обязательно!

2. Повторение материала

Повторим пройденный материал. Я приглашаю к экрану ученика. Задача: соединить с помощью указки записанную формулу с её названием и ответить на вопрос, что с помощью данной формулы можно ещё найти. (2 слайд).

Откройте тетради, подпишите число, классная работа. Обратите внимание на экран. (3 слайд).

Работаем устно по следующему слайду. (5 слайд).

12 + 5 + 8 25 10 250 – 50
200 – 170 30 + 15 45: 3
15 + 30 45 – 17 28 25 4

Задание: найти значение выражений. (Один ученик работает у экрана.)

– Что интересного заметили, решая примеры? На какие примеры стоит обратить особое внимание? (Ответы детей.)

Проблемная ситуация

– Какие свойства сложения и умножения вы знаете из начальной школы? Умеете ли вы их записывать с помощью буквенных выражений? (Ответы детей).

3. Изучение нового материала

– И так, тема сегодняшнего урока “Законы арифметических действий” (6 слайд).
– Запишите в тетради тему урока.
– Что нового мы должны узнать на уроке? (Вместе с детьми формулируются цели урока).
– Смотрим на экран. (7 слайд) .

Вы видите законы сложения, записанные в буквенном виде и примеры. (Разбор примеров).

– Следующий слайд (8 слайд).

Разбираем законы умножения.

– А теперь познакомимся с очень важным распределительным законом (9 слайд).

– Подведём итог. (10 слайд).

– Для чего необходимо знать законы арифметических действий? Пригодятся ли они в дальнейшей учёбе, при изучении каких предметов? (Ответы детей.)

– Запишите законы в тетрадь.

4. Закрепление материала

– Откройте учебник и найдите № 212 (а, б, д) устно.

№ 212 (в, г, ж, з) письменно на доске и в тетрадях. (Проверка).

– Устно работаем над № 214.

– Выполняем задачу № 215. Какой закон используется при решении данного номера? (Ответы детей).

5. Самостоятельная работа

– Запишите на карточке ответ и сравните ваши результаты с соседом по парте. А теперь внимание на экран. (11 слайд). (Проверка самостоятельной работы).

6. Итог урока

– Внимание на экран. (12 слайд). Закончите предложение.

Оценки за урок.

7. Домашнее задание

§13, № 227, 229.

8. Рефлексия

Тема № 1.

Действительные числа.Числовые выражения. Преобразование числовых выражений

I. Теоретический материал

Основные понятия

· Натуральные числа

· Десятичная запись числа

· Противоположные числа

· Целые числа

· Обыкновенная дробь

· Рациональные числа

· Бесконечная десятичная дробь

· Период числа, периодическая дробь

· Иррациональные числа

· Действительные числа

· Арифметические действия

· Числовое выражение

· Значение выражения

· Обращение десятичной дроби в обыкновенную

· Обращение обыкновенной дроби в десятичную

· Обращение периодической дроби в обыкновенную

· Законы арифметических действий

· Признаки делимости

Числа, употребляемые при счете предметов или для указания порядкового номера того или иного предмета среди однородных предметов, называются натуральными . Любое натуральное число можно записать с помощью десяти цифр : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Такую запись чисел называют десятичной.

Например : 24; 3711; 40125.

Множество натуральных чисел принято обозначать N .

Два числа, отличающиеся друг от друга только знаком, называются противоположными числами.

Например , числа 7 и – 7.

Числа натуральные, им противоположные, а также число нуль составляют множество целых Z .

Например : – 37; 0; 2541.

Число вида , где m – целое число, n – натуральное число, называется обыкновенной дробью . Заметим, что любое натуральное число можно представить в виде дроби со знаменателем 1.

Например : , .

Объединение множеств целых и дробных чисел (положительных и отрицательных) составляет множество рациональных чисел. Его принято обозначать Q .

Например : ; – 17,55; .

Пусть дана десятичная дробь. Ее значение не изменится, если справа приписать любое число нулей.

Например : 3,47 = 3,470 = 3,4700 = 3,47000… .

Такая десятичная дробь называется бесконечной десятичной дробью.

Любую обыкновенную дробь можно представить в виде бесконечной десятичной дроби.

Последовательно повторяющаяся группа цифр после запятой в записи числа называется периодом , а бесконечная десятичная дробь, имеющая такой период в своей записи, называется периодической . Для краткости принято период записывать один раз, заключая его в круглые скобки.



Например : 0,2142857142857142857… = 0,2(142857).

2,73000… = 2,73(0).

Бесконечные десятичные непериодические дроби называются иррациональными числами.

Объединение множеств рациональных и иррациональных чисел составляет множество действительных чисел. Его принято обозначать R .

Например : ; 0,(23); 41,3574…

Число является иррациональным.

Для всех чисел определены действия трёх ступеней:

· действия I ступени: сложение и вычитание;

· действия II ступени: умножение и деление;

· действия III ступени: возведение в степень и извлечение корня.

Выражение, составленное из чисел, знаков арифметических действий и скобок, называется числовым.

Например : ; .

Число, полученное в результате выполнения действий, называется значением выражения .

Числовое выражение не имеет смысла , если содержит деление на нуль.

При нахождении значения выражения выполняются последовательно действия III ступени, II ступени и в конце действия I ступени. При этом необходимо учитывать размещение в числовом выражении скобок.

Преобразование числового выражения заключается в последовательном выполнении арифметических действий над входящими в него числами с использованием соответствующих правил (правило сложения обыкновенных дробей с разными знаменателями, умножения десятичных дробей и др.). Задания на преобразование числовых выражений в учебных пособиях встречаются в следующих формулировках: «Найдите значение числового выражения», «Упростите числовое выражение», «Вычислите» и др.

При нахождении значений некоторых числовых выражений приходится выполнять действия с дробями разного вида: обыкновенными, десятичными, периодическими. В этом случае бывает необходимо обратить обыкновенную дробь в десятичную или выполнить обратное действие – заменить периодическую дробь обыкновенной.

Чтобы обратить десятичную дробь в обыкновенную , достаточно в числителе дроби записать число, стоящее после запятой, а в знаменателе – единицу с нулями, причем нулей должно быть столько, сколько цифр находится справа от запятой.

Например : ; .

Чтобы обратить обыкновенную дробь в десятичную , надо разделить ее числитель на знаменатель по правилу деления десятичной дроби на целое число.

Например : ;

;

.

Чтобы обратить периодическую дробь в обыкновенную , надо:

1) из числа, стоящего до второго периода, вычесть число, стоящее до первого периода;

2) записать эту разность числителем;

3) в знаменателе написать цифру 9 столько раз, сколько цифр в периоде;

4) дописать в знаменателе столько нулей, сколько цифр между запятой и первым периодом.

Например : ; .

Законы арифметических действий над действительными числами

1. Переместительный (коммутативный) закон сложения: от перестановки слагаемых значение суммы не меняется:

2. Переместительный (коммутативный) закон умножения: от перестановки множителей значение произведения не меняется:

3. Сочетательный (ассоциативный) закон сложения: значение суммы не изменится, если какую-либо группу слагаемых заменить их суммой:

4. Сочетательный (ассоциативный) закон умножения: значение произведения не изменится, если какую-либо группу множителей заменить их произведением:

.

5. Распределительный (дистрибутивный) закон умножения относительно сложения: чтобы умножить сумму на число, достаточно умножить каждое слагаемое на это число и сложить полученные произведения:

Свойства 6 – 10 называют законами поглощения 0 и 1.

Признаки делимости

Свойства, позволяющие в некоторых случаях, не производя деление, определить, делится ли одно число на другое, называются признаками делимости .

Признак делимости на 2. Число делится на 2 тогда и только тогда, когда запись числа оканчивается на четную цифру. То есть на 0, 2, 4, 6, 8.

Например : 12834; –2538; 39,42.

Признак делимости на 3 . Число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3.

Например : 2742; –17940.

Признак делимости на 4 . Число, содержащее не менее трех цифр, делится на 4 тогда и только тогда, когда делится на 4 двузначное число, образованное последними двумя цифрами заданного числа.

Например : 15436; –372516.

Признак делимости на 5 . Число делится на 5 тогда и только тогда, когда его последняя цифра либо 0, либо 5.

Например : 754570; –4125.

Признак делимости на 9 . Число делится на 9 тогда и только тогда, когда сумма его цифр делится на 9.

Например : 846; –76455.

В дальнейшем, когда будем изучать действия над числами, изображёнными цифрами или буквами (безразлично), нам придётся во многих выводах опираться на те законы действий, которые изучались в арифметике. В силу важности этих законов они называются основными законами действий.

Напомним их.

1. Переместительный закон сложения.

Сумма не изменяется от перемены порядка слагаемых.

Этот закон уже был записан в § 1 в виде равенства:

где а и - любые числа.

Из арифметики известно, что переместительный закон верен для суммы любого числа слагаемых.

2. Сочетательный закон сложения.

Сумма нескольких слагаемых не изменится, если какую-нибудь группу рядом стоящих слагаемых заменить их суммой.

Для суммы трёх слагаемых имеем:

Например, сумму можно вычислить двумя способами так:

Сочетательный закон справедлив для любого числа слагаемых.

Так, в сумме четырёх слагаемых рядом стоящие слагаемые можно как угодно объединять в группы и заменять эти слагаемые их суммой:

Например, мы получим то же число 16, каким бы способом ни группировали рядом стоящие слагаемые:

Переместительным и сочетательным законами часто пользуются при устных вычислениях, располагая числа так, чтобы легче было их сложить в уме.

Поменяем местами два последних слагаемых, получим:

Сложить числа в этом порядке оказалось гораздо легче.

Обычно слагаемые в новом порядке не переписывают, а производят их перемещение в уме: переставив мысленно 67 и И, сразу складывают 89 и 11 и затем прибавляют 67.

Чтобы легче было сложить эти числа в уме, изменим порядок слагаемых так:

Пользуясь сочетательным законом, заключим два последних слагаемых в скобки:

Сложение чисел в скобках произвести легко, получим:

3. Переместительный закон умножения.

Произведение не изменяется от перемены порядка сомножителей:

где - любые числа.

Из арифметики известно, что переместительный закон верен для произведения любого числа сомножителей.

4. Сочетательный закон умножения.

Произведение нескольких сомножителей не изменится, если какую-нибудь группу рядом стоящих сомножителей заменить их произведением.

Для произведения трёх сомножителей имеем:

Например, произведение трёх сомножителей 5-3-4 можно вычислить так:

Для произведения четырёх сомножителей имеем:

Например, то же число 20 получится при любой группировке рядом стоящих сомножителей:

Применение переместительного и сочетательного законов умножения часто значительно облегчает вычисления.

Умножить 25 на 37 не очень легко. Переместим два последних сомножителя:

Теперь умножение легко выполнится в уме.



Поделиться