Определение математической модели уровня технологии. Виды математических моделей

Определение математической модели

Важным фактором, определяющим роль математики в различных приложениях, является возможность описания наиболее существенных черт и свойств изучаемого объекта на языке математических символов и соотношений. Такое описание принято называть математическим моделированием или формализацией.

Определение 1. Математической моделью реального объекта (явления) называется ее упрощенная, идеализированная схема, составленная с помощью математических символов и операций (соотношений).

Для построения математической модели конкретной экономической задачи (проблемы) рекомендуется выполнение следующей последовательности работ:

1. Определение известных и неизвестных величин, а также существующих условий и предпосылок (что дано и что требуется найти?);

2. Выявление важнейших факторов проблемы;

3. Выявление управляемых и неуправляемых параметров;

4. Математическое описание посредством уравнений, неравенств, функций и иных отношений взаимосвязей между элементами модели (параметрами, переменными), исходя из содержания рассматриваемой задачи.

Известные параметры задачи относительно ее математической модели считаются внешними (заданными априори, т. е. до построения модели). В экономической литературе их называют экзогенными переменными . Значение же изначально неизвестных переменных вычисляются в результате исследования модели, поэтому по отношению к модели они считаются внутренними . В экономической литературе их называют эндогенными переменными .

С точки зрения назначения, можно выделить описательные модели и модели принятия решения . Описательные модели отражают содержание и основные свойства экономических объектов как таковых. С их помощью вычисляются числовые значения экономических факторов и показателей.

Модели принятия решения помогают найти наилучшие варианты плановых показателей или управленческих решений. Среди них наименее сложным являются оптимизационные модели, посредством которых описываются (моделируются) задачи типа планирования, а наиболее сложными --игровые модели, описывающие задачи конфликтного характера с учетом пересечения различных интересов. Эти модели отличаются от описательных тем, что в них имеется возможность выбора значений управляющих параметров (чего нет в описательных моделях).

Общая схема принятия решения

В математической экономике трудно переоценить роль моделей принятия решения. Наиболее частое применение находят те из них, которые сводят исходные задачи оптимального планирования производства, рационального распределения ограниченных ресурсов и эффективной деятельности экономических субъектов к экстремальным задачам, к задачам оптимального управления и к игровым задачам. Какова же общая структура таких моделей?

Любая задача принятия решения характеризуется наличием лица или лиц, преследующих определенные цели и имеющих для этого определенные возможности. Поэтому для выявления основных элементов модели принятия решения требуется ответить на следующие вопросы:

џ кто принимает решение?

џ каковы цели принятия решения?

џ в чем состоит принятие решения?

џ каково множество возможных вариантов достижения цели?

џ при каких условиях происходит принятие решения?

Итак перед нами некая общая задача принятия решения. Для построения ее формальной схемы (модели) введем общие обозначения.

Буквой N обозначим множество всех, принимающих решение сторон. Пусть N={1,2,..., n}, т.е. имеется всего n участников идентифицируемых только номерами. Каждый элемент называется лицом, принимающим решение (ЛПР). (например, отдельная личность, фирма, плановый орган большого концерна, правительства и др.).

Предположим, что множество всех допустимых решений (альтернатив, стратегий) каждого ЛПР предварительно изучено и описано математически (например, в виде системы неравенств). Обозначим их через X 1 , X 2 ,..., X n . После этого процесс принятия решения всеми ЛПР сводится к следующему формальному акту: каждое ЛПР выбирает конкретный элемент из своего допустимого множества решений,..., . В результате получается набор х =(х1 ,...,хn) выбранных решений, который мы называем ситуацией.

Для оценки ситуации х с точки зрения преследуемых целей ЛПР строятся функции f 1 ,..., f n (называемыми целевыми функциями или критериями качества), ставящие в соответствие каждой ситуации х числовые оценки f 1 (x),..., f n (x) (например, доходы фирм в ситуации х, или их затраты и т. д.). Тогда цель i -го ЛПР формализуется следующим образом: выбрать такое свое решение, чтобы в ситуации х =(х 1 ,...,х n ) число f i (х) было как можно большим (или меньшим). Однако достижение этой цели от него зависит частично в виду наличия других сторон, влияющих на общую ситуацию x с целью достижения своих собственных целей. Этот факт пересечения интересов (конфликтность) отражается в том, что функция f i помимо x i зависит и от остальных переменных x j (j i). Поэтому в моделях принятия решения со многими участниками их цели причодится формализовать иначе, чем максимизация или минимизация значений функции f i (х). Наконец, пусть нам удалось математически описать все те условия, при которых происходит принятие решения. (описание связей между управляемыми и неуправляемыми переменными, описание влияния случайных факторов, учет динамических характеристик и т. д.). Совокупность всех этих условий для простоты обозначим одним символом.

Таким образом, общая схема задачи принятия решения может выглядеть так:

Конкретизируя элементы модели (1.6.1.), уточняя их характеристики и свойства, можно получть тот или иной конкретный класс моделей принятия решения. Так если в (1.6.1.) N состоит только из одного элемента (n=1), а все условия и предпосылки исходной реальной задачи можно описать в виде множества допустимых решений этого единственного ЛПР, то из (1.6.1.) получаем структуру оптимизационной (экстремальной) задачи: < Х, f >. В этой схеме ЛПР может рассматриваться как планирующих орган. С помощью данной схемы можно написать экстремальные задачи двух видов:

Если в экстремальной задаче явно учитывается фактор времени, то она называется задачей оптимального управления. Если n 2 , то (1.6.1.) является общей схемой задачи принятия решения в условиях конфликта, т. е. в тех ситуациях, когда имеет место пересечение интересов двух или более сторон.

Часто у ЛПР имеется не одна, а несколько целей. В этом случае из (1) получаем схему, где все функции f 1 (x),..., f n (x) определены на одном и том же множестве Х. Такие задачи называются задачами многокритериальной оптимизации.

Имеются классы задач принятия решения, получившие свои названия исходя из их назначения: системы массового обслуживания, задачи управления запасами, задачи сетевого и календарного планирования, теория надежности и др.

Если элементы модели (1) не зависят явно от времени, т. е. процесс принятия решения сводится к мгновенному акту выбора точки из заданного множества, то задача называется статической. В противном случае, т. е. когда принятие решения представляет собой многоэтапный дискретный или непрерывный во времени процесс, задача называется динамической . Если элементы модели (1) не содержат случайных величин и вероятностных явлений, то задача называется детерминированной, в противном случае -- стохастической.

ЭВМ прочно вошла в нашу жизнь, и практически нет такой области человеческой деятельности, где не применялась бы ЭВМ. ЭВМ сейчас широко используется в процессе создания и исследования новых машин, новых технологических процессов и поиске их оптимальных вариантов; при решении экономических задач, при решении задач планирования и управления производством на различных уровнях. Создание же крупных объектов в ракетотехнике, авиастроении, судостроении, а также проектирование плотин, мостов, и др. вообще невозможно без применения ЭВМ.

Для использования ЭВМ при решении прикладных задач, прежде всего прикладная задача должна быть "переведена" на формальный математический язык, т.е. для реального объекта, процесса или системы должна быть построена его математическая модель .

Слово "Модель" происходит от латинского modus (копия, образ, очертание). Моделирование - это замещение некоторого объекта А другим объектом Б. Замещаемый объект А называется оригиналом или объектом моделирования, а замещающий Б - моделью. Другими словами, модель - это объект -заменитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.

Целью моделирования являются получение, обработка, представление и использование информации об объектах, которые взаимодействуют между собой и внешней средой; а модель здесь выступает как средство познания свойств и закономерности поведения объекта.

Моделирование широко используется в различных сферах человеческой деятельности, особенно в сферах проектирования и управления, где особенными являются процессы принятия эффективных решений на основе получаемой информации.

Модель всегда строится с определенной целью, которая оказывает влияние на то, какие свойства объективного явления оказываются существенными, а какие - нет. Модель представляет собой как бы проекцию объективной реальности под определенным углом зрения. Иногда, в зависимости от целей, можно получить ряд проекций объективной реальности, вступающих в противоречие. Это характерно, как правило, для сложных систем, у которых каждая проекция выделяет существенное для определенной цели из множества несущественного.

Теорией моделирования является раздел науки, изучающий способы исследования свойств объектов-оригиналов, на основе замещения их другими объектами-моделями. В основе теории моделирования лежит теория подобия. При моделировании абсолютное подобие не имеет места и лишь стремится к тому, чтобы модель достаточно хорошо отображала исследуемую сторону функционирования объекта. Абсолютное подобие может иметь место лишь при замене одного объекта другим точно таким же.

Все модели можно разделить на два класса:

  1. вещественные,
  2. идеальные.

В свою очередь вещественные модели можно разделить на:

  1. натурные,
  2. физические,
  3. математические.

Идеальные модели можно разделить на:

  1. наглядные,
  2. знаковые,
  3. математические.

Вещественные натурные модели - это реальные объекты, процессы и системы, над которыми выполняются эксперименты научные, технические и производственные.

Вещественные физические модели - это макеты, муляжи, воспроизводящие физические свойства оригиналов (кинематические, динамические, гидравлические, тепловые, электрические, световые модели).

Вещественные математические - это аналоговые, структурные, геометрические, графические, цифровые и кибернетические модели.

Идеальные наглядные модели - это схемы, карты, чертежи, графики, графы, аналоги, структурные и геометрические модели .

Идеальные знаковые модели - это символы, алфавит , языки программирования, упорядоченная запись , топологическая запись , сетевое представление .

Идеальные математические модели - это аналитические, функциональные, имитационные, комбинированные модели.

В приведенной классификации некоторые модели имеют двойное толкование (например - аналоговые). Все модели, кроме натурных, можно объединить в один класс мысленных моделей, т.к. они являются продуктом абстрактного мышления человека.

Остановимся на одном из наиболее универсальных видов моделирования - математическом, ставящим в соответствие моделируемому физическому процессу систему математических соотношений, решение которой позволяет получить ответ на вопрос о поведении объекта без создания физической модели, часто оказывающейся дорогостоящей и неэффективной.

Математическое моделирование - это средство изучения реального объекта, процесса или системы путем их замены математической моделью , более удобной для экспериментального исследования с помощью ЭВМ.

Математическая модель является приближенным представлением реальных объектов, процессов или систем, выраженным в математических терминах и сохраняющим существенные черты оригинала. Математические модели в количественной форме, с помощью логико-математических конструкций, описывают основные свойства объекта, процесса или системы, его параметры, внутренние и внешние связи .

Еще не существует стандартизированной терминологии и она вряд ли появится, так как за всю историю математического моделирование очень большое количество ученных занимались данной темой.

Математическое моделирование применяется в различных сферах человеческой жизни. Таких как, например: математика, биохимия, медицина и так далее .

Определение математической модели, данное А.Д. Мишкисом.

Пусть мы исследуем совокупную величину S свойств некого объекта A (объект: система, ситуация, явление, процесс и так далее). Для чего мы строим математический объект A" – арифметическое соотношение, геометрическая фигура, система уравнений и так далее, исследование которого средствами математики должно дать ответы на поставленные вопросы о свойствах S. В данном случае математический объект A" называют математической моделью объекта A относительно совокупности свойств S. В определении дает понять не только то, что объекты A и A" имеют разную природу, но и то, что A" определяется не только самим оригиналом A, но и совокупностью его исследуемых свойств S. То если мы проводим два исследования одного и того же объекта A по отношении двух различных совокупностей S1 и S2 его свойств, то соответствующие математические модели " и " A1 A2 могут быть совершенно различны. Из данного исследования следует первое свойство математических моделей - их множественность. Выделим, что здесь имеется в виду не только множественность моделей, связанная с их иерархичностью, а результат порожденный необходимостью исследования различных систем, ... S1 S2 его свойств.

Например, одно и тоже массированное кучевое облако можно рассматривать как с точки зрения порождения им нисходящих воздушных потоков, распределяющихся далее по поверхности земли и осознаваемые нами как ветровой порыв перед началом сильного ливневого дождя, так и как зону высокой электрической активности атмосферы. Все это проявление объекта представляет высокую опасность для полета воздушных судов. Нисходящие потоки опасны на этапах взлета - посадки, из-за значительного изменения величины подземной силы крыла воздушного судна (резкая смена направление скорости ветра с встречного на попутное). Возникающие в таком облаке сильные электрические поля могут создать разряд атмосферного электричества (молнию), результатом воздействия которого на воздушного судна может стать полный или частичный выход из строя радиоэлектронной аппаратуры на борту воздушного судна. Ясно, что в первом случае для модели используются уравнения аэрогидродинамики и исследуется поле скоростей воздушных потоков (математическая модель относительно совокупности признаков S1). Во втором случае изучается электрическая структура облака и строится электродинамическая модель (относительно совокупности признаков S2).

Вторым, наиболее важным свойством является единство математических моделей. Отличающим фактом является то, что разнообразные реальные системы или их содержательные модели могут иметь одну и ту же математическую модель.

Весомым в теории математического моделирования является постоянное согласование всех аспектов построения модели с задачами и целями исследования. Поэтому выделим на первый план некоторые существенные для исследований особенности механических систем и процессов.

Во-первых, факторы, определяющие такие объекты, характеризуются, как измеримые величины – параметры.

Во-вторых, в основе таких моделей лежат уравнения, описывающие фундаментальные законы природы (механики), не нуждающиеся в пересмотре и уточнении. Даже готовые частные модели отдельных явлений, используемые при составлении более общих, хорошо сформулированы и описаны с точки зрения условий и областей применения.

В-третьих, огромное препятствие при разработке моделей механических систем и процессов представляет описание недостоверно известных характеристик объекта, как функциональных, так и числовых.

В-четвертых, нынешние требования к таким моделям подводят к необходимости учета множества факторов, влияющих на поведение объекта, не только таких, которые связаны известными законами природы. Все эти особенности приводят к тому, что модели механических систем и процессов относятся в основном к классу математических.

Математические модели базируется на математическом описании объекта. В математическое описание, естественно, прежде всего, входят взаимосвязи параметров объекта, что характеризует его особенности функционирования. Такие связи можно представить в виде:

Рисунок 2.1.1 - Взаимосвязи параметров объекта

Первые четыре из указанных видов носят обобщающее название: аналитических зависимостей.

Математическое описание заключает в себе не только взаимосвязи элементов и параметров объекта (закономерности и законы), но и полный набор функциональных и числовых данных объекта (характеристики; начальные, граничные, конечные условия; ограничения), а также методы вычисления выходных параметров модели. То есть математическое описание – это полная совокупность функций, методов, данных вычисления, позволяющая получить результат.

Однако в математическую модель может не входить часть математического описания (чаще всего некоторые исходные данные), но кроме него обязаны содержаться описания всех допущений, использованных для ее построения, а также алгоритмы перевода исходных и выходных данных с модели на оригинал и обратно.

Рисунок 2.1.2 – Математическое описании модели

В качестве дополнения к классификации математические модели в зависимости от природы объекта, решаемых задач и применяемых методов могут различаться следующими видами:

– расчетные (алгоритмы, номограммы, формулы, графики, таблицы);

– соответственные (пример: модель в аэродинамической трубе и реальный полет самолета в атмосфере);

– подобные (пропорциональные соответствующие параметры и одинаковые математические описания);

– нелинейные и линейные (описываемые функциями, содержащие основные параметры только в степени 0 и 1, или любыми видами функций),

– нестационарные и стационарные (зависящие или независящие от времени),

– дискретные или непрерывные,

– стохастические или детерминированные (вероятностные, однозначные или точные: модели массового обслуживания, имитационные и др.),

– нечеткие и четкие (примеры нечетких множеств: около 10; глубоко или мелко; хорошо или плохо).

Исходя из исторических событий сложилось так, что под математической моделью порой подразумевают лишь один особый вид моделей, содержащих только однозначное прямое математическое описание в виде вычислительных алгоритмов или аналитических зависимостей – то есть детерминированная математическая модель, при помощью которой при одних и тех же исходных данных можно получить лишь один и тот же результат. Большое распространение получили детерминированные модели, устанавливающие связь с параметрами оригинала при помощи коэффициентов пропорциональности, всех одновременно равных единице. Математическое описание, используемое такой моделью, естественно рассматривать как описание непосредственно оригинала – данное утверждение верно: у модели и оригинала в этом случае существует одно общее математическое описание. В условиях такой кажущейся простоты неопытный инженер воспринимает и модель уже не как модель, а как оригинал. Однако такая математическая модель является всего лишь моделью со всеми упрощениями, условностями, абстракциями, предположениями, положенными в ее основу. Появляется желание "упростить" процесс добротного моделирования, что вообще говоря невозможно, так как модель или соответствует оригиналу, или ее нет вообще. Халатное отношение к этому приводит к множеству ошибочных выводов в прикладных исследованиях, и полученные результаты не соответствуют реальному положению вещей.

В качестве антипода детерминированных моделей представлены модели имитационные.

Имитационные модели (стохастические) – это математические модели таких оригиналов, для отдельных элементов которых отсутствует аналитический вид математического описания. Математическое описание имитационных моделей содержит в себе описание случайных процессов (стохастических). В качестве такого описания представляют разнообразные формы законов распределения, которые можно составить на основании статистической обработки результатов наблюдения за оригиналом.

В математическое описание имитационных моделей кроме законов распределения случайных величин, которые описывают явление, может входить описание взаимосвязей случайных величин (например, с помощью моделей теории массового обслуживания), а также алгоритм статистических испытаний (метод Монте-Карло для реализации элементарных случайных событий). Отсюда следует, что имитационные модели используют математический аппарат теории вероятностей: математической статистики, теории массового обслуживания и метода статистических испытаний.

Представь себе самолет: крылья, фюзеляж, хвостовое оперение, все это вместе - настоящий огромный, необъятный, целый самолет. А можно сделать модель самолета, маленькую, но все как взаправду, те же крылья и т.д., но компактный. Так же и математическая модель. Есть текстовая задача, громоздкая, на нее можно так посмотреть, прочесть, но не совсем понять, и уж тем более не ясно как решать ее. А что если сделать из большой словесной задачи ее маленькую модель, математическую модель? Что значит математическую? Значит, используя правила и законы математической записи, переделать текст в логически верное представление при помощи цифр и арифметических знаков. Итак, математическая модель - это представление реальной ситуации с помощью математического языка.

Начнем с простого: Число больше числа на. Нам нужно записать это, не используя слов, а только язык математики. Если больше на, то получается, что если мы из вычтем, то останется та самая разность этих чисел равная. Т.е. или. Суть понял?

Теперь посложнее, сейчас будет текст, который ты должен попробовать представить в виде математической модели, пока не читай, как это сделаю я, попробуй сам! Есть четыре числа: , и. Произведение и больше произведения и в два раза.

Что получилось?

В виде математической модели выглядеть это будет так:

Т.е. произведение относится к как два к одному, но это можно еще упросить:

Ну ладно, на простых примерах ты понял суть, я так полагаю. Переходим к полноценным задачам, в которых эти математические модели еще и решать нужно! Вот задача.

Математическая модель на практике

Задача 1

После дождя уровень воды в колодце может повыситься. Мальчик измеряет время падения небольших камешков в колодец и рассчитывает расстояние до воды по формуле, где — расстояние в метрах, — время падения в секундах. До дождя время падения камешков составляло с. На сколько должен подняться уровень воды после дождя, чтобы измеряемое время изменилось на с? Ответ выразите в метрах.

О, ужас! Какие формулы, что за колодец, что происходит, что делать? Я прочел твои мысли? Расслабься, в задачах этого типа условия бывают и пострашнее, главное помнить, что тебя в этой задаче интересуют формулы и отношения между переменными, а что все это обозначает в большинстве случаев не очень важно. Что ты тут видишь полезного? Я лично вижу. Принцип решения этих задач следующий: берешь все известные величины и подставляешь. НО, задумываться иногда надо!

Последовав моему первому совету, и,подставив все известные в уравнение, получим:

Это я подставил время секунды, и нашел высоту, которую пролетал камень до дождя. А теперь надо посчитать после дождя и найти разницу!

Теперь прислушайся ко второму совету и задумайся, в вопросе уточняется, «на сколько должен подняться уровень воды после дождя, чтобы измеряемое время изменилось на с». Сразу надо прикинуть, тааак, после дождя уровень воды повышается, значит, время падения камня до уровня воды меньше и тут витиеватая фраза «чтобы измеряемое время изменилось» приобретает конкретный смысл: время падения не увеличивается, а сокращается на указанные секунды. Это означает, что в случае броска после дождя, нам просто нужно из начального времени c вычесть с, и получим уравнение высоты, которую камень пролетит после дождя:

Ну и наконец, чтобы найти, на сколько должен подняться уровень воды после дождя, чтобы измеряемое время изменилось на с., нужно просто вычесть из первой высоты падения вторую!

Получим ответ: на метра.

Как видишь, ничего сложного нет, главное, особо не заморачивайся, откуда такое непонятное и порой сложное уравнение в условиях взялось и что все в нем означает, поверь на слово, большинство этих уравнений взяты из физики, а там дебри похлеще, чем в алгебре. Мне иногда кажется, что эти задачи придуманы, чтоб запугать ученика на ЕГЭ обилием сложных формул и терминов, а в большинстве случаев не требуют почти никаких знаний. Просто внимательно читай условие и подставляй известные величины в формулу!

Вот еще задача, уже не по физике, а из мира экономической теории, хотя знаний наук кроме математики тут опять не требуется.

Задача 2

Зависимость объёма спроса (единиц в месяц) на продукцию предприятия-монополиста от цены (тыс. руб.) задаётся формулой

Выручка предприятия за месяц (в тыс. руб.) вычисляется по формуле. Определите наибольшую цену, при которой месячная выручка составит не менее тыс. руб. Ответ приведите в тыс. руб.

Угадай, что сейчас сделаю? Ага, начну подставлять то, что нам известно, но, опять же, немного подумать все же придется. Пойдем с конца, нам нужно найти при котором. Так, есть, равно какому-то, находим, чему еще равно это, а равно оно, так и запишем. Как ты видишь, я особо не заморачиваюсь о смысле всех этих величин, просто смотрю из условий, что чему равно, так тебе поступать и нужно. Вернемся к задаче, у тебя уже есть, но как ты помнишь из одного уравнения с двумя переменными ни одну из них не найти, что же делать? Ага, у нас еще в условии осталась неиспользованная частичка. Вот, уже два уравнения и две переменных, значит, теперь обе переменные можно найти - отлично!

Такую систему решить сможешь?

Решаем подстановкой, у нас уже выражена, значит, подставим ее в первое уравнение и упростим.

Получается вот такое квадратное уравнение: , решаем, корни вот такие, . В задании требуется найти наибольшую цену, при которой будут соблюдаться все те условия, которые мы учли, когда систему составляли. О, оказывается это было ценой. Прикольно, значит, мы нашли цены: и. Наибольшую цену, говорите? Окей, наибольшая из них, очевидно, ее в ответ и пишем. Ну как, сложно? Думаю, нет, и вникать не надо особо!

А вот тебе и устрашающая физика, а точнее еще одна задачка:

Задача 3

Для определения эффективной температуры звёзд используют закон Стефана-Больцмана, согласно которому, где — мощность излучения звезды, — постоянная, — площадь поверхности звезды, а — температура. Известно, что площадь поверхности некоторой звезды равна, а мощность её излучения равна Вт. Найдите температуру этой звезды в градусах Кельвина.

Откуда и понятно? Да, в условии написано, что чему равно. Раньше я рекомендовал все неизвестные сразу подставлять, но здесь лучше сначала выразить неизвестное искомое. Смотри как все просто: есть формула и в ней известны, и (это греческая буква «сигма». Вообще, физики любят греческие буквы, привыкай). А неизвестна температура. Давай выразим ее в виде формулы. Как это делать, надеюсь, знаешь? Такие задания на ГИА в 9 классе обычно дают:

Теперь осталось подставить числа вместо букв в правой части и упростить:

Вот и ответ: градусов Кельвина! А какая страшная была задача, а!

Продолжаем мучить задачки по физике.

Задача 4

Высота над землей подброшенного вверх мяча меняется по закону, где — высота в метрах, — время в секундах, прошедшее с момента броска. Сколько секунд мяч будет находиться на высоте не менее трех метров?

То были всё уравнения, а вот здесь надо определить, сколько мяч находился на высоте не менее трех метров, это значит на высоте. Что мы составлять будем? Неравенство, именно! У нас есть функция, которая описывает как летит мяч, где - это как раз та самая высота в метрах, нам нужна высота. Значит

А теперь просто решаешь неравенство, главное, не забудь поменять знак неравенства с больше либо равно на меньше, либо равно, когда будешь умножать на обе части неравенства, чтоб перед от минуса избавиться.

Вот такие корни, строим интервалы для неравенства:

Нас интересует промежуток, где знак минус, поскольку неравенство принимает там отрицательные значения, это от до оба включительно. А теперь включаем мозг и тщательно думаем: для неравенства мы применяли уравнение, описывающее полет мяча, он так или иначе летит по параболе, т.е. он взлетает, достигает пика и падает, как понять, сколько времени он будет находиться на высоте не менее метров? Мы нашли 2 переломные точки, т.е. момент, когда он взмывает выше метров и момент, когда он, падая, достигает этой же отметки, эти две точки выражены у нас в виде времени, т.е. мы знаем на какой секунде полета он вошел в интересующую нас зону (выше метров) и в какую вышел из нее (упал ниже отметки в метра). Сколько секунд он находился в этой зоне? Логично, что мы берем время выхода из зоны и вычитаем из него время вхождения в эту зону. Соответственно: - столько он находился в зоне выше метров, это и есть ответ.

Так уж тебе повезло, что больше всего примеров по этой теме можно взять из разряда задачек по физике, так что лови еще одну, она заключительная, так что поднапрягись, осталось совсем чуть-чуть!

Задача 5

Для нагревательного элемента некоторого прибора экспериментально была получена зависимость температуры от времени работы:

Где — время в минутах, . Известно, что при температуре нагревательного элемента свыше прибор может испортиться, поэтому его нужно отключить. Найдите, через какое наибольшее время после начала работы нужно отключить прибор. Ответ выразите в минутах.

Действуем по отлаженной схеме, все, что дано, сперва выписываем:

Теперь берем формулу и приравниваем ее к значению температуры, до которой максимально можно нагреть прибор пока он не сгорит, то есть:

Теперь подставляем вместо букв числа там, где они известны:

Как видишь, температура при работе прибора описывается квадратным уравнением, а значит, распределяется по параболе, т.е. прибор нагревается до какой-то температуры, а потом остывает. Мы получили ответы и, следовательно, при и при минутах нагревания температура равна критической, но между и минутами - она еще выше предельной!

А значит, отключить прибор нужно через минуты.

МАТЕМАТИЧЕСКИЕ МОДЕЛИ. КОРОТКО О ГЛАВНОМ

Чаще всего математические модели используются в физике: тебе ведь наверняка приходилось запоминать десятки физических формул. А формула - это и есть математическое представление ситуации.

В ОГЭ и ЕГЭ есть задачи как раз на эту тему. В ЕГЭ (профильном) это задача номер 11 (бывшая B12). В ОГЭ - задача номер 20.

Схема решения очевидна:

1) Из текста условия необходимо «вычленить» полезную информацию - то, что в задачах по физике мы пишем под словом «Дано». Этой полезной информацией являются:

  • Формула
  • Известные физические величины.

То есть каждой букве из формулы нужно поставить в соответствие определенное число.

2) Берешь все известные величины и подставляешь в формулу. Неизвестная величина так и остается в виде буквы. Теперь нужно только решить уравнение (обычно, довольно простое), и ответ готов.

Стать учеником YouClever,

Подготовиться к ОГЭ или ЕГЭ по математике,

А также получить доступ к учебнику YouClever без ограничений...

Как систему уравнений, или арифметических соотношений, или геометрических фигур, или комбинацию того и другого, исследование которых средствами математики должно ответить на поставленные вопросы о свойствах некоторой совокупности свойств объекта реального мира , как совокупность математических соотношений, уравнений, неравенств, описывающих основные закономерности, присущие изучаемому процессу, объекту или системе .

В автоматизированных системах управления математическая модель используется для определения алгоритма функционирования контроллера. Этот алгоритм определяет, как следует изменять управляющее воздействие в зависимости от изменения задающего для того, чтобы была достигнута цель управления.

Классификация моделей

Формальная классификация моделей

Формальная классификация моделей основывается на классификации используемых математических средств. Часто строится в форме дихотомий . Например, один из популярных наборов дихотомий :

и так далее. Каждая построенная модель является линейной или нелинейной, детерминированной или стохастической, … Естественно, что возможны и смешанные типы: в одном отношении сосредоточенные (по части параметров), в другом - распределённые модели и т. д.

Классификация по способу представления объекта

Наряду с формальной классификацией, модели различаются по способу представления объекта:

  • Структурные или функциональные модели

Модели-гипотезы в науке не могут быть доказаны раз и навсегда, можно лишь говорить об их опровержении или неопровержении в результате эксперимента .

Если модель первого типа построена, то это означает, что она временно признаётся за истину и можно сконцентрироваться на других проблемах. Однако это не может быть точкой в исследованиях, но только вре́менной паузой: статус модели первого типа может быть только вре́менным.

Феноменологическая модель

Второй тип - феноменологическая модель («ведем себя так, как если бы…» ), содержит механизм для описания явления, хотя этот механизм недостаточно убедителен, не может быть достаточно подтверждён имеющимися данными или плохо согласуется с имеющимися теориями и накопленным знанием об объекте. Поэтому феноменологические модели имеют статус вре́менных решений. Считается, что ответ всё ещё неизвестен, и необходимо продолжить поиск «истинных механизмов». Ко второму типу Пайерлс относит, например, модели теплорода и кварковую модель элементарных частиц.

Роль модели в исследовании может меняться со временем, может случиться так, что новые данные и теории подтвердят феноменологические модели и те будут повышены до статуса гипотезы. Аналогично новое знание может постепенно прийти в противоречие с моделями-гипотезами первого типа, и те могут быть переведены во второй. Так, кварковая модель постепенно переходит в разряд гипотез; атомизм в физике возник как временное решение, но с ходом истории перешёл в первый тип. А вот модели эфира проделали путь от типа 1 к типу 2, а сейчас находятся вне науки.

Идея упрощения очень популярна при построении моделей. Но упрощение бывает разным. Пайерлс выделяет три типа упрощений в моделировании.

Приближение

Третий тип моделей - приближения («что-то считаем очень большим или очень малым» ). Если можно построить уравнения, описывающие исследуемую систему, то это не значит, что их можно решить даже с помощью компьютера. Общепринятый приём в этом случае - использование приближений (моделей типа 3). Среди них модели линейного отклика . Уравнения заменяются линейными. Стандартный пример - закон Ома .

Мысленный эксперимент

m x ¨ = − k x {\displaystyle m{\ddot {x}}=-kx} ,

где x ¨ {\displaystyle {\ddot {x}}} означает вторую производную от x {\displaystyle x} по времени: x ¨ = d 2 x d t 2 {\displaystyle {\ddot {x}}={\frac {d^{2}x}{dt^{2}}}} .

Полученное уравнение описывает математическую модель рассмотренной физической системы. Эта модель называется «гармоническим осциллятором ».

По формальной классификации эта модель линейная, детерминистская, динамическая, сосредоточенная, непрерывная. В процессе её построения мы сделали множество допущений (об отсутствии внешних сил, отсутствии трения, малости отклонений и т. д.), которые в реальности могут не выполняться.

По отношению к реальности это, чаще всего, модель типа 4 упрощение («опустим для ясности некоторые детали»), поскольку опущены некоторые существенные универсальные особенности (например, диссипация). В некотором приближении (скажем, пока отклонение груза от равновесия невелико, при малом трении, в течение не слишком большого времени и при соблюдении некоторых других условий), такая модель достаточно хорошо описывает реальную механическую систему, поскольку отброшенные факторы оказывают пренебрежимо малое влияние на её поведение. Однако модель можно уточнить, приняв во внимание какие-то из этих факторов. Это приведёт к новой модели, с более широкой (хотя и снова ограниченной) областью применимости.

Впрочем, при уточнении модели сложность её математического исследования может существенно возрасти и сделать модель фактически бесполезной. Зачастую более простая модель позволяет лучше и глубже исследовать реальную систему, чем более сложная (и, формально, «более правильная»).

Если применять модель гармонического осциллятора к объектам, далёким от физики, её содержательный статус может быть другим. Например, при приложении этой модели к биологическим популяциям её следует отнести, скорее всего, к типу 6 аналогия («учтём только некоторые особенности»).

Жёсткие и мягкие модели

Гармонический осциллятор - пример так называемой «жёсткой» модели. Она получена в результате сильной идеализации реальной физической системы. Свойства гармонического осциллятора качественно изменяются малыми возмущениями. Например, если добавить в правую часть малое слагаемое − ε x ˙ {\displaystyle -\varepsilon {\dot {x}}} (трение) ( ε > 0 {\displaystyle \varepsilon >0} - некоторый малый параметр), то получим экспоненциально затухающие колебания, если изменить знак добавочного слагаемого (ε x ˙) {\displaystyle (\varepsilon {\dot {x}})} то трение превратится в накачку и амплитуда колебаний будет экспоненциально возрастать.

Для решения вопроса о применимости жёсткой модели необходимо понять, насколько существенными являются факторы, которыми мы пренебрегли. Нужно исследовать мягкие модели, получающиеся малым возмущением жёсткой. Для гармонического осциллятора они могут задаваться, например, следующим уравнением:

m x ¨ = − k x + ε f (x , x ˙) {\displaystyle m{\ddot {x}}=-kx+\varepsilon f(x,{\dot {x}})} .

Здесь f (x , x ˙) {\displaystyle f(x,{\dot {x}})} - некоторая функция, в которой может учитываться сила трения или зависимость коэффициента жёсткости пружины от степени её растяжения. Явный вид функции f {\displaystyle f} нас в данный момент не интересует.

Если мы докажем, что поведение мягкой модели принципиально не отличается от поведения жёсткой (вне зависимости от явного вида возмущающих факторов, если они достаточно малы), задача сведётся к исследованию жёсткой модели. В противном случае применение результатов, полученных при изучении жёсткой модели, потребует дополнительных исследований.

Если система сохраняет своё качественное поведение при малом возмущении, говорят, что она структурно устойчива. Гармонический осциллятор - пример структурно-неустойчивой (негрубой) системы. Тем не менее, эту модель можно применять для изучения процессов на ограниченных промежутках времени.

Универсальность моделей

Важнейшие математические модели обычно обладают важным свойством универсальности : принципиально разные реальные явления могут описываться одной и той же математической моделью. Скажем, гармонический осциллятор описывает не только поведение груза на пружине, но и другие колебательные процессы, зачастую имеющие совершенно иную природу: малые колебания маятника, колебания уровня жидкости в U {\displaystyle U} -образном сосуде или изменение силы тока в колебательном контуре. Таким образом, изучая одну математическую модель, мы изучаем сразу целый класс описываемых ею явлений. Именно этот изоморфизм законов, выражаемых математическими моделями в различных сегментах научного знания, подвиг Людвига фон Берталанфи на создание «общей теории систем ».

Прямая и обратная задачи математического моделирования

Существует множество задач, связанных с математическим моделированием. Во-первых, надо придумать основную схему моделируемого объекта, воспроизвести его в рамках идеализаций данной науки. Так, вагон поезда превращается в систему пластин и более сложных тел из разных материалов, каждый материал задаётся как его стандартная механическая идеализация (плотность, модули упругости, стандартные прочностные характеристики), после чего составляются уравнения, по дороге какие-то детали отбрасываются как несущественные, производятся расчёты, сравниваются с измерениями, модель уточняется, и так далее. Однако для разработки технологий математического моделирования полезно разобрать этот процесс на основные составные элементы.

Традиционно выделяют два основных класса задач, связанных с математическими моделями: прямые и обратные.

Прямая задача : структура модели и все её параметры считаются известными, главная задача - провести исследование модели для извлечения полезного знания об объекте. Какую статическую нагрузку выдержит мост? Как он будет реагировать на динамическую нагрузку (например, на марш роты солдат, или на прохождение поезда на различной скорости), как самолёт преодолеет звуковой барьер, не развалится ли он от флаттера , - вот типичные примеры прямой задачи. Постановка правильной прямой задачи (задание правильного вопроса) требует специального мастерства. Если не заданы правильные вопросы, то мост может обрушиться, даже если была построена хорошая модель для его поведения. Так, в 1879 г. в Великобритании обрушился металлический Железнодорожный мост через Ферт-оф-Тей , конструкторы которого построили модель моста, рассчитали его на 20-кратный запас прочности на действие полезной нагрузки, но забыли о постоянно дующих в тех местах ветрах. И через полтора года он рухнул.

В простейшем случае (одно уравнение осциллятора, например) прямая задача очень проста и сводится к явному решению этого уравнения.

Обратная задача : известно множество возможных моделей, надо выбрать конкретную модель на основании дополнительных данных об объекте. Чаще всего структура модели известна, и необходимо определить некоторые неизвестные параметры. Дополнительная информация может состоять в дополнительных эмпирических данных, или в требованиях к объекту (задача проектирования ). Дополнительные данные могут поступать независимо от процесса решения обратной задачи (пассивное наблюдение ) или быть результатом специально планируемого в ходе решения эксперимента (активное наблюдение ).

Одним из первых примеров виртуозного решения обратной задачи с максимально полным использованием доступных данных был построенный Ньютоном метод восстановления сил трения по наблюдаемым затухающим колебаниям.

В качестве другого примера можно привести математическую статистику . Задача этой науки - разработка методов регистрации, описания и анализа данных наблюдений и экспериментов с целью построения вероятностных моделей массовых случайных явлений . То есть множество возможных моделей ограничено вероятностными моделями. В конкретных задачах множество моделей ограничено сильнее.

Компьютерные системы моделирования

Для поддержки математического моделирования разработаны системы компьютерной математики, например, Maple , Mathematica , Mathcad , MATLAB , VisSim и др. Они позволяют создавать формальные и блочные модели как простых, так и сложных процессов и устройств и легко менять параметры моделей в ходе моделирования. Блочные модели представлены блоками (чаще всего графическими), набор и соединение которых задаются диаграммой модели.

Дополнительные примеры

Модель Мальтуса

Согласно модели, предложенной Мальтусом , скорость роста пропорциональна текущему размеру популяции , то есть описывается дифференциальным уравнением:

x ˙ = α x {\displaystyle {\dot {x}}=\alpha x} ,

где α {\displaystyle \alpha } - некоторый параметр, определяемый разностью между рождаемостью и смертностью. Решением этого уравнения является экспоненциальная функция x (t) = x 0 e α t {\displaystyle x(t)=x_{0}e^{\alpha t}} . Если рождаемость превосходит смертность ( α > 0 {\displaystyle \alpha >0} ), размер популяции неограниченно и очень быстро возрастает. В действительности этого не может происходить из-за ограниченности ресурсов. При достижении некоторого критического объёма популяции модель перестаёт быть адекватной, поскольку не учитывает ограниченность ресурсов. Уточнением модели Мальтуса может служить логистическая модель , которая описывается дифференциальным уравнением Ферхюльста :

x ˙ = α (1 − x x s) x {\displaystyle {\dot {x}}=\alpha \left(1-{\frac {x}{x_{s}}}\right)x} ,

где - «равновесный» размер популяции, при котором рождаемость в точности компенсируется смертностью. Размер популяции в такой модели стремится к равновесному значению x s {\displaystyle x_{s}} , причём такое поведение структурно устойчиво.

Система хищник-жертва

Допустим, что на некоторой территории обитают два вида животных : кролики (питающиеся растениями) и лисы (питающиеся кроликами). Пусть число кроликов x {\displaystyle x} , число лис y {\displaystyle y} . Используя модель Мальтуса с необходимыми поправками, учитывающими поедание кроликов лисами, приходим к следующей системе, носящей имя модели Лотки - Вольтерры :

{ x ˙ = (α − c y) x y ˙ = (− β + d x) y {\displaystyle {\begin{cases}{\dot {x}}=(\alpha -cy)x\\{\dot {y}}=(-\beta +dx)y\end{cases}}}

Поведение данной системы не является структурно устойчивым : малое изменение параметров модели (например, учитывающее ограниченность ресурсов, необходимых кроликам) может привести к качественному изменению поведения .

При некоторых значениях параметров эта система имеет равновесное состояние , когда число кроликов и лис постоянно. Отклонение от этого состояния приводит к постепенно затухающим колебаниям численности кроликов и лис.

Возможна и противоположная ситуация, когда любое малое отклонение от положения равновесия приведёт к катастрофическим последствиям, вплоть до полного вымирания одного из видов. На вопрос о том, какой из этих сценариев реализуется, модель Вольтерры - Лотки ответа не даёт: здесь требуются дополнительные исследования.

См. также

Примечания

  1. «A mathematical representation of reality»(Encyclopaedia Britanica)
  2. Новик И. Б. , О философских вопросах кибернетического моделирования. М., Знание, 1964.
  3. Советов Б. Я., Яковлев С. А. , Моделирование систем: Учеб. для вузов - 3-е изд., перераб. и доп. - М.: Высш. шк., 2001. - 343 с. ISBN 5-06-003860-2
  4. Самарский А. А. , Михайлов А. П. Математическое моделирование. Идеи. Методы. Примеры . - 2-е изд., испр. - М. : Физматлит, 2001. - ISBN 5-9221-0120-X .
  5. Мышкис А. Д. , Элементы теории математических моделей. - 3-е изд., испр. - М.: КомКнига, 2007. - 192 с ISBN 978-5-484-00953-4
  6. Севостьянов, А. Г. Моделирование технологических процессов: учебник / А. Г. Севостьянов, П. А. Севостьянов. - М.: Легкая и пищевая промышленность, 1984. - 344 с.
  7. Ротач В.Я. Теория автоматического управления. - 1-е. - М. : ЗАО "Издательский дом МЭИ", 2008. - С. 333. - 9 с. - ISBN 978-5-383-00326-8 .
  8. Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena (англ.) . Springer, Complexity series, Berlin-Heidelberg-New York, 2006. XII+562 pp. ISBN 3-540-35885-4 . Дата обращения 18 июня 2013. Архивировано 18 июня 2013 года.
  9. «Теория считается линейной или нелинейной в зависимости от того, какой - линейный или нелинейный - математический аппарат, какие - линейные или нелинейные - математические модели она использует. … ез отрицание последней. Современный физик, доведись ему заново создавать определение столь важной сущности, как нелинейность, скорее всего, поступил бы иначе, и, отдав предпочтение нелинейности как более важной и распространенной из двух противоположностей, определил бы линейность как „не нелинейность“.» Данилов Ю. А. , Лекции по нелинейной динамике. Элементарное введение. Серия «Синергетика: от прошлого к будущему». Изд.2. - M.: URSS, 2006. - 208 с. ISBN 5-484-00183-8
  10. «Динамические системы, моделируемые конечным числом обыкновенных дифференциальных уравнений, называют сосредоточенными или точечными системами. Они описываются с помощью конечномерного фазового пространства и характеризуются конечным числом степеней свободы. Одна и та же система в различных условиях может рассматриваться либо как сосредоточенная, либо как распределенная. Математические модели распределенных систем - это дифференциальные уравнения в частных производных, интегральные уравнения или обыкновенные уравнения с запаздывающим аргументом. Число степеней свободы распределенной системы бесконечно, и требуется бесконечное число данных для определения её состояния.»
    Анищенко В. С. , Динамические системы, Соросовский образовательный журнал, 1997, № 11, с. 77-84.
  11. «В зависимости от характера изучаемых процессов в системе S все виды моделирования могут быть разделены на детерминированные и стохастические, статические и динамические, дискретные, непрерывные и дискретно-непрерывные. Детерминированное моделирование отображает детерминированные процессы, то есть процессы, в которых предполагается отсутствие всяких случайных воздействий; стохастическое моделирование отображает вероятностные процессы и события. … Статическое моделирование служит для описания поведения объекта в какой-либо момент времени, а динамическое моделирование отражает поведение объекта во времени. Дискретное моделирование служит для описания процессов, которые предполагаются дискретными, соответственно непрерывное моделирование позволяет отразить непрерывные процессы в системах, а дискретно-непрерывное моделирование используется для случаев, когда хотят выделить наличие как дискретных, так и непрерывных процессов.»
    Советов Б. Я., Яковлев С. А. , Моделирование систем: Учеб. для вузов - 3-е изд., перераб. и доп. - М.: Высш. шк., 2001. - 343 с. ISBN 5-06-003860-2
  12. Обычно в математической модели отражается структура (устройство) моделируемого объекта, существенные для целей исследования свойства и взаимосвязи компонентов этого объекта; такая модель называется структурной. Если же модель отражает только то, как объект функционирует - например, как он реагирует на внешние воздействия,- то она называется функциональной или, образно, чёрным ящиком. Возможны и модели комбинированного типа. Мышкис А. Д. , Элементы теории математических моделей. - 3-е изд., испр. - М.: КомКнига, 2007. - 192 с


Поделиться