Что такое квантовая запутанность простыми словами. Что такое квантовая запутанность? Суть простыми словами

Ярко блестела золотистая осенняя листва деревьев. Лучи вечернего солнца коснулись поредевших верхушек. Свет пробился сквозь ветки и устроил спектакль из причудливых фигур, мелькавших на стене университетской «каптёрки».

Задумчивый взгляд сэра Гамильтона медленно скользил, наблюдая за игрой светотени. В голове ирландского математика шла настоящая плавильня мыслей, идей и выводов. Он прекрасно понимал, что объяснение многих явлений с помощью Ньютоновской механики подобно игре теней на стене, обманчиво сплетающих фигуры и оставляющих без ответа многие вопросы. «Возможно, это волна… а может быть, поток частиц, - размышлял учёный, - или свет является проявлением обоих явлений. Подобно фигурам, сотканным из тени и света».

Начало квантовой физики

Интересно наблюдать за великими людьми и пытаться осознать, как рождаются великие идеи, изменяющие ход эволюции всего человечества. Гамильтон - один из тех, кто стоял у истоков зарождения квантовой физики. Спустя пятьдесят лет, в начале двадцатого века, изучением элементарных частиц занимались многие учёные. Полученные знания были противоречивы и нескомпилированы. Однако первые шаткие шаги были сделаны.

Понимание микромира в начале ХХ века

В 1901 году была представлена первая модель атома и показана её несостоятельность, с позиции обычной электродинамики. В этот же период Макс Планк и Нильс Бор публикуют множество трудов о природе атома. Несмотря на их полного понимания структуры атома не существовало.

Спустя несколько лет, в 1905 году, малоизвестный немецкий учёный Альберт Эйнштейн опубликовал доклад о возможности существования светового кванта в двух состояниях - волнового и корпускулярного (частицы). В его труде приводились доводы, поясняющие причину несостоятельности модели. Однако видение Эйнштейна было ограничено старым пониманием модели атома.

После многочисленных трудов Нильса Бора и его коллег в 1925 году зародилось новое направление - некое подобие квантовой механики. Распространённое выражение - «квантовая механика» появилось спустя тридцать лет.

Что мы знаем о квантах и их причудах?

На сегодня квантовая физика ушла достаточно далеко. Открыто много различных явлений. Но что мы знаем на самом деле? Ответ представлен одним учёным современности. "В квантовую физику можно либо верить, либо ее не понимать", - таково определение Подумайте над этим сами. Достаточно будет упомянуть такое явление, как квантовая запутанность частиц. Это явление ввергло научный мир в положение полного недоумения. Ещё большим шоком стало то, что возникший парадокс несовместим с и Эйнштейна.

Впервые эффект квантовой запутанности фотонов обсуждался в 1927 году на пятом Солвеевском Конгрессе. Между Нильсом Бором и Эйнштейном возник жаркий спор. Парадокс квантовой спутанности полностью изменил понимание сути материального мира.

Известно, что все тела состоят из элементарных частиц. Соответственно, все явления квантовой механики отражаются в обычном мире. Нильс Бор говорил, что если мы не смотрим на Луну, то её не существует. Эйнштейн считал это неразумным и полагал, что объект существует независимо от наблюдателя.

При изучении проблем квантовой механики следует понимать, что её механизмы и законы взаимосвязаны между собой и не подчиняются классической физике. Попробуем разобраться в самой противоречивой области - квантовой запутанности частиц.

Теория квантовой запутанности

Для начала стоит понимать, что квантовая физика подобна бездонному колодцу, в котором можно обнаружить все, что угодно. Явление квантовой запутанности в начале прошлого века изучалось Эйнштейном, Бором, Максвеллом, Бойлем, Беллом, Планком и многими другими физиками. На протяжении двадцатого века по всему миру активно изучали это и экспериментировали тысячи учёных.

Мир подчинён строгим законам физики

Почему такой интерес к парадоксам квантовой механики? Все очень просто: мы живём, подчиняясь определённым законам физического мира. Умение «обходить» предопределённость открывает магическую дверь, за которой все становится возможным. К примеру, концепция «Кота Шрёдингера» ведёт к управлению материей. Также станет возможна телепортация информации, которую вызывает квантовая запутанность. Передача информации станет мгновенной, независимо от расстояния.
Этот вопрос пока находится в стадии изучения, однако имеет положительную тенденцию.

Аналогия и понимание

Чем же уникальна квантовая запутанность, как её понять и что происходит при этом? Попробуем разобраться. Для этого потребуется провести некий мысленный эксперимент. Представьте, что у вас в руках две коробки. В каждой из них лежит по одному мячу с полосой. Теперь одну коробку отдаём космонавту, и он улетает на Марс. Как только вы открываете коробку и видите, что полоса на мяче горизонтальна, то в другой коробке мяч автоматически будет иметь вертикальную полосу. Это и будет квантовая запутанность простыми словами выраженная: один объект предопределяет положение другого.

Однако следует понимать, что это лишь поверхностное объяснение. Для того чтобы получить квантовую запутанность, необходимо, чтобы частицы имели одинаковое происхождение, подобно близнецам.

Очень важно понимать, что эксперимент будет сорван, если до вас кто-то имел возможность посмотреть хотя бы на один из объектов.

Где может быть использована квантовая спутанность?

Принцип квантовой запутанности может быть использован для передачи информации на большие расстояния мгновенно. Подобный вывод противоречит теории относительности Эйнштейна. Она гласит, что максимальная скорость перемещения присуща только свету - триста тысяч километров в секунду. Подобная передача информации даёт возможность существования физической телепортации.

Все в мире - информация, в том числе и материя. К такому выводу пришли квантовые физики. В 2008 году на основании теоретической базы данных удалось увидеть квантовую спутанность невооружённым глазом.

Это в очередной раз говорит о том, что мы стоим на пороге великих открытий - перемещения в пространстве и во времени. Время во Вселенной дискретно, поэтому мгновенное перемещение на огромные расстояния даёт возможность попадать в различную плотность времени (на основании гипотез Эйнштейна, Бора). Возможно, в будущем это будет реальностью так же, как мобильный телефон сегодня.

Эфиродинамика и квантовая запутанность

По мнению некоторых ведущих учёных, квантовая спутанность поясняется тем, что пространство заполнено неким эфиром - чёрной материей. Любая элементарная частица, как нам известно, пребывает в виде волны и корпускулы (частицы). Некоторые учёные считают, что все частицы находятся на «полотне» тёмной энергии. Понять это непросто. Давайте попробуем разобраться другим путём - методом ассоциации.

Представьте себя на берегу моря. Лёгкий бриз и слабое дуновение ветра. Видите волны? А где-то вдалеке, в отблесках лучей солнца, виден парусник.
Корабль будет нашей элементарной частицей, а море - эфиром (тёмной энергией).
Море может находиться в движении в виде видимых волн и капель воды. Точно так же и все элементарные частицы могут быть просто морем (её составляющей неотъемлемой частью) или же отдельной частицей - каплей.

Это упрощённый пример, все несколько сложнее. Частицы без присутствия наблюдателя находятся в виде волны и не имеют определённого местоположения.

Белый парусник - это выделенный объект, он отличается от глади и структуры воды моря. Точно так же существуют «пики» в океане энергии, которые мы можем воспринимать как проявление известных нам сил, сформировавших материальную часть мира.

Микромир живёт по своим законам

Принцип квантовой запутанности можно понять, если брать в учёт то, что элементарные частицы находятся в виде волн. Не имея определённого местоположения и характеристик, обе частицы пребывают в океане энергии. В момент появления наблюдателя волна «превращается» в доступный осязанию объект. Вторая частица, соблюдая систему равновесия, приобретает противоположные свойства.

Описанная статья не направлена на ёмкие научные описания квантового мира. Возможность осмысления обычного человека базируется на доступности понимания изложенного материала.

Физика элементарных частиц изучает запутанность квантовых состояний на основании спина (вращения) элементарной частицы.

Научным языком (упрощённо) - квантовая спутанность определяется по разному спину. В процессе наблюдения за объектами учёные увидели, что может существовать только два спина - вдоль и поперёк. Как ни странно, в других положениях частицы наблюдателю не «позируют».

Новая гипотеза - новый взгляд на мир

Изучение микрокосмоса - пространства элементарных частиц - породило множество гипотез и предположений. Эффект квантовой запутанности натолкнул учёных на мысль о существовании некой квантовой микрорешётки. По их мнению, в каждом узле - точке пересечения - находится квант. Вся энергия - целостная решётка, а проявление и движение частиц возможно только через узлы решётки.

Размер «окна» такой решётки достаточно мал, и измерение современным оборудованием невозможно. Однако, чтобы подтвердить или опровергнуть данную гипотезу, учёные решили изучить движение фотонов в пространственной квантовой решётке. Суть в том, что фотон может двигаться либо прямо, либо зигзагами - по диагонали решётки. Во втором случае, преодолев большую дистанцию, он потратит больше энергии. Соответственно, будет отличаться от фотона, движущегося по прямой линии.

Возможно, со временем мы узнаем, что живём в пространственной квантовой решётке. Или же может оказаться неверным. Однако именно принцип квантовой запутанности указывает на возможность существования решётки.

Если говорить простым языком, то в гипотетическом пространственном «кубе» определение одной грани несёт за собой чёткое противоположное значение другой. Таков принцип сохранения структуры пространство - время.

Эпилог

Чтобы понимать волшебный и загадочный мир квантовой физики, стоит внимательно всмотреться в ход развития науки за последние пятьсот лет. Раньше считалось, что Земля имеет плоскую форму, а не сферическую. Причина очевидна: если принять её форму круглой, то вода и люди не смогут удержаться.

Как мы видим, проблема существовала в отсутствии полного видения всех действующих сил. Возможно, что современной науке для понимания квантовой физики не хватает видения всех действующих сил. Пробелы видения порождают систему противоречий и парадоксов. Возможно, магический мир квантовой механики хранит в себе ответы на поставленные вопросы.

Малдасена показал, что с помощью запутывания частиц на одной этикетке с частицами на другой можно идеально квантово-механически описать соединение червоточиной банок. В контексте голографического принципа, запутанность эквивалентна физическому связыванию кусков пространства-времени вместе.

Вдохновленный этой связью запутанности с пространством-временем, Ван Раамсдонк задался вопросом, насколько большую роль запутанность может играть в формировании пространства-времени. Он представил самую чистую этикетку на банке с квантовым супом: белую, соответствующую пустому диску анти-де-ситтеровского пространства. Но он знал, что, согласно основам квантовой механики, пустое пространство никогда не будет полностью пустым. Оно заполнено парами частиц, которые всплывают и исчезают. И этим мимолетные частицы запутаны.

Поэтому Ван Раамсдонк нарисовал воображаемую биссектрису на голографической этикетке и затем математически разорвал квантовую запутанность между частицами на одной половине этикетке и частицами на другой. Он обнаружил, что соответствующий диск анти-де-ситтеровского пространства начал делиться пополам. Будто бы запутанные частицы были крючками, которые удерживают полотно пространства и времени на месте; без них пространство-времени разлетается на части. По мере того, как Ван Раамсдонк понижал степень запутанности, часть подключенного к разделенным регионам пространства становилась тоньше, подобно резиновой нити, тянущейся от жвачки. «Это навело меня на мысль, что присутствие пространства начинается с присутствия запутанности».

Это было смелое заявление, и потребовалось время, чтобы работа Ван Раамсдонка, опубликованная в General Relativity and Gravitation в 2010 году, привлекла серьезное внимание. Огонь интереса всполыхнул уже в 2012 году, когда четверо физиков из Калифорнийского университета в Санта-Барбаре написали работу, бросающую вызов общепринятым убеждениям о горизонте событий, точки невозврата черной дыры.

Истина, скрытая файрволом

В 1970-х годах физик-теоретик Стивен Хокинг показал, что пары запутанных частиц - тех же видов, которые Ван Раамсдонк позже анализировал в своей квантовой границе - . Одна падает в черную дыру, а другая убегает вместе с так называемым излучением Хокинга. Этот процесс постепенно подтачивает массу черной дыры, в конечном итоге приводя к ее гибели. Но если черные дыры исчезают, вместе с ней должна исчезать и запись всего, что падало внутрь. Квантовая теория же утверждает, что информация не может быть уничтожена.

К 90-м годам несколько физиков-теоретиков, включая Леонарда Сасскинда из Стэнфорда, предложили решение этой проблемы. Да, сказали они, материя и энергия падает в черную дыру. Но с точки зрения внешнего наблюдателя, этот материал никогда не преодолевает горизонт событий; он словно балансирует на его грани. В результате горизонт событий становится голографической границей, содержащей всю информацию о пространстве внутри черной дыры. В конце концов, когда черная дыра испаряется, эта информация утекает в виде излучения Хокинга. В принципе, наблюдатель может собрать это излучение и восстановить всю информацию о недрах черной дыры.

В своей работе 2012 года физики Ахмед Альмхейри, Дональд Марольф, Джеймс Салли и Джозеф Полчинский заявили, что в этой картине что-то не так. Для наблюдателя, пытающегося собрать головоломку того, что находится внутри черной дыры, отметили одни, все отдельные части головоломки - частицы излучения Хокинга - должны быть запутаны между собой. Также каждая хокингова частица должна быть запутана со своим оригинальным партнером, который упал в черную дыру.

К сожалению, одной запутанности недостаточно. Квантовая теория утверждает, что для того, чтобы запутанность присутствовала между всеми частицами снаружи черной дыры, должна быть исключена запутанность этих частиц с частицами внутри черной дыры. Кроме того, физики обнаружили, что разрыв одной из запутанностей породил бы непроницаемую энергетическую стену, так называемый файрвол, на горизонте событий.

Многие физики усомнились в том, что черные дыры на самом деле испаряют все, что пытается проникнуть внутрь. Но сама возможность существования файрвола наводит на тревожные мысли. Ранее физики уже задумывались о том, как выглядит пространство внутри черной дыры. Теперь они не уверены в том, есть ли у черных дыр это «внутри» вообще. Все будто смирились, отмечает Прескилл.

Но Сасскинд не смирился. Он потратил годы, пытаясь доказать, что информация не исчезает внутри черной дыры; сегодня он так же убежден, что идея файрвола ошибочна, но доказать этого пока не смог. Однажды он получил загадочное письмо от Малдасены: «В нем было немного, - говорит Сасскинд. - Только ЭР = ЭПР». Малдасена, работающий сейчас в Институте продвинутых исследований в Принстоне, задумался о своей работе с банками супа 2001 года и заинтересовался, могут ли червоточины разрешить мешанину запутанности, порожденную проблемой файрвола. Сасскинд быстро подхватил эту идею.

В статье, опубликованной в немецком журнале Fortschritte der Physik в 2013 году, Малдасена и Сасскинд заявили, что червоточина - технически мост Эйнштейна-Розена, или ЭР - является пространственно-временным эквивалентом квантовой запутанности. (Под ЭПР понимают эксперимент Эйнштейна-Подольского-Розена, который должен был развеять мифологическую квантовую запутанность). Это означает, что каждая частица излучения Хокинга, независимо от того, как далеко она находится от начала, напрямую связана с недрами черной дыры посредством короткого пути через пространство-время. «Если двигать через червоточину, далекие вещи оказываются не такими уж и далекими», - говорит Сасскинд.

Сасскинд и Малдасена предложили собрать все частицы Хокинга и столкнуть их вместе, пока они не коллапсируют в черную дыру. Эта черная дыра была бы запутана, а значит соединена червоточиной с оригинальной черной дырой. Этот трюк превратил запутанную мешанину хокинговых частиц - парадоксально запутанных с черной дырой и между собой - в две черные дыры, соединенные червоточиной. Перегрузка запутанности разрешилась, и проблема файрвола была исчерпана.

Не все ученые прыгнули на подножку трамвая ЭР = ЭПР. Сасскинд и Малдасена признают, что им предстоит проделать еще много работы, чтобы доказать эквивалентность червоточин и запутанности. Но после обдумывания последствий парадокса файрвола, многие физики соглашаются, что пространство-время внутри черной дыры обязано своим существованием запутанности с излучением снаружи. Это важное прозрение, отмечает Прескилл, поскольку оно также означает, что вся ткань пространства-времени Вселенной, включая тот клочок, который занимаем мы, является продуктом квантового жуткого действия.

Космический компьютер


Одно дело сказать, что вселенная конструирует пространство-время посредством запутанности; совсем другое — показать, как вселенная это делает. Этой сложной задачей занялись Прескилл и коллеги, которые решили рассмотреть космос как колоссальный квантовый компьютер. Почти двадцать лет ученые работали над строительством квантовых компьютеров, которые используют информацию, зашифрованную в запутанных элементах, вроде фотонов или крошечных микросхем, чтобы решать проблемы, с которыми традиционные компьютеры справиться не могут. Команда Прескилла использует знание, полученное в результате этих попыток, чтобы предсказать, как отдельные детали внутри банки с супом могли бы отразиться на заполненной запутанностью этикетке.

Квантовые компьютеры работают, эксплуатируя компоненты, которые находятся в суперпозиции состояний, как носители данных - они могут быть нулями и единицами одновременно. Но состояние суперпозиции очень хрупкое. Избыток тепла, например, может разрушить состояние и всю заключенную в нем квантовую информацию. Эти потери информации, которые Прескилл сравнивает с рваными страницами в книге, кажутся неизбежными.

Но физики ответили на это, создав протокол квантовой коррекции ошибок. Вместо того чтобы полагаться на одну частицу для хранения квантового бита, ученые разделяют данные между несколькими запутанными частицами. Книга, написанная на языке квантовой коррекции ошибок, будет полна бреда, говорит Прескилл, но все ее содержимое можно будет восстановить, даже если половина страниц пропадет без вести.

Квантовая коррекция ошибок привлекла много внимания в последние годы, но теперь Прескилл и его коллеги подозревают, что природа придумала эту систему уже давно. В июне, в журнале Journal of High Energy Physics, Прескилл и его команда показали, как запутывание множества частиц на голографической границе идеально описывает одну частицу, притягиваемую гравитацией внутри куска анти-де-ситтеровского пространства. Малдасена говорит, что эта находка может привести к лучшему пониманию того, как голограмма кодирует все детали пространства-времени, которое окружает.

Физики признают, что их размышления должны пройти долгий путь, чтобы соответствовать реальности. В то время как анти-де-ситтеровское пространство предлагает физикам преимущество работы с хорошо определенной границей, у Вселенной нет такой четкой этикетки на банке с супом. Ткань пространства-времени космоса расширяется с момента Большого Взрыва и продолжает делать это в нарастающем темпе. Если вы отправите луч света в космос, он не развернется и не вернется; он будет лететь. «Непонятно, как определить голографическую теорию нашей Вселенной, - писал Малдасена в 2005 году. - Просто нет удобного места для размещения голограммы».

Тем не менее, как бы странно ни звучали все эти голограммы, банки с супом и червоточины, они могут стать перспективными дорожками, которые приведут к слиянию квантовых жутких действий с геометрией пространства-времени. В своей работе над червоточинами Эйнштейн и Розен обсудили возможные квантовые последствия, но не провели соединения со своими ранними работами по запутанности. Сегодня эта связь может помочь объединить квантовую механику ОТО в теорию квантовой гравитации. Вооружившись такой теорией, физики могли бы разобрать загадки состояния юной Вселенной, когда материя и энергия умещались в бесконечно малой точке пространства.

За последние полтора века произошел значительный скачок в развитии человечества, в особенности в области фундаментальной физики. Не успели ученые окунуться в физику атома, как уже начали строиться атомные станции; научный переворот, совершённый Эйнштейном в скором времени привел нас к полной глобализации с более чем тысячью спутниками на орбите Земли. Примеров – масса, однако осталось еще немало нерешенных задач и необъясненных явлений. Одно из таких явлений скрывается в микромире квантовых процессов, а именно – квантовая запутанность. Что это такое, почему это важно и какие исследования ведутся для решения этого вопроса – разбираем в данной статье.

Прежде всего, определим само понятие «квантовая запутанность». Вся информация об объекте в микромире описывается неким абстрактным (математическим) состоянием, которое включает, например, вероятность обнаружения частицы в данном объеме, импульс частицы, ее заряд или спин, и тп. Подобное «состояние» может быть описано физическими уравнениями, которые, несмотря на свою абстрактность и сложность, все же способны предсказывать результаты экспериментов.

Квантовой запутанностью называют такое явление, когда квантовые состояния двух и более частиц оказываются взаимосвязаны. То есть, определив состояние одной частицы, можно предсказать некоторые характеристики другой. Примечательно, что изменение некоторого параметра одной частицы приводит к изменению некоторого параметра другой частицы, независимо от расстояния.

Противоречие с «принципом локальности»

Как известно из работ Эйнштейна, в природе имеет место так называемый «принцип локальности», согласно которому любое взаимодействие между телами не может происходить мгновенно, а передается через посредника. Скорость передачи этого взаимодействия не должна превышать скорость света в вакууме. В то же время, как было упомянуто ранее, квантовая запутанность может наблюдаться на огромных расстояниях с «мгновенной передачей информации», что является прямым нарушением принципа локальности.

Эйнштейн, Нильс Бор и квантовая механика

В 1927-м году в Брюсселе состоялся Пятый Сольвеевский конгресс — международная конференция на тему актуальных проблем в области физики и химии. Одна из состоявшихся дискуссий была на тему так называемой Копенгагенской интерпретации квантовой механики.

Данная теория была разработана Нильсом Бором и Вернером Гейзенбергом и утверждает о вероятностной природе волновой функции. Несмотря на решение некоторых тогдашних проблем физики, например, связанных с корпускулярно-волновым дуализмом, данная теория также вызывала и ряд вопросов. В первую очередь, само представление объекта с известным импульсом, не имеющего определенной координаты, а лишь вероятность обнаружения в данной точке, — противоречит нашему опыту жизни в макромире. Кроме того, эта теория подразумевала неопределенность в расположении частицы, до тех пор, пока не будет произведено измерение.

Альберт Эйнштейн не мог принять такую интерпретацию, в результате чего и зародилась его известная фраза «Бог не играет в кости», на что Нильс Бор ответил «Альберт, не указывай Богу, что ему делать». Так начался длительный спор Эйнштейна и Бора.

Ответ Эйнштейна последовал в 1935-м году, когда он, вместе с Борисом Подольским и Натаном Розеном опубликовал работу, носившую название «Можно ли считать квантово-механическое описание физической реальности полным?». В данной статье был представлен мысленный эксперимент под названием «парадокс Эйнштейна - Подольского - Розена» (ЭПР-парадокс).

Эксперимент был направлен на опровержение такого фундаментального для квантовой механики утверждения, как принцип неопределенности Гейзенберга, который гласит, что нельзя одновременно измерить две характеристики частицы, зачастую имеют ввиду – импульс и координату.

ЭПР-парадокс звучит следующим образом. Пусть две частицы одного сорта образовались вследствие распада третьей частицы. Тогда сумма их импульсов будет равна импульсу исходной частицы, согласно закону сохранения импульса. Далее, зная импульс исходной частицы (которую заранее подготовят экспериментаторы), и измерив импульс второй частицы, можно рассчитать импульс первой. То есть в результате измерения мы получили такую характеристику первой частицы как импульс. Теперь измерим координату второй частицы, и в итоге будем иметь две измеренные характеристики одной частицы, что прямо противоречит принципу неопределенности Гейзенберга.

Однако в самой же квантовой механике есть средства для разрешения этого парадокса. Согласно законам квантового мира – любое измерение приводит к изменению характеристик измеряемого тела. Тогда до измерения координаты второй частицы, действительно, может иметь место определенный импульс. Но в момент измерения координаты состояние частицы меняется и нельзя утверждать, что эти характеристики были измерены одновременно.

Тем не менее, в результате корпускулярно-волнового дуализма, находясь на некотором расстоянии, эти возникшие частицы имеют состояния, описываемые одной волновой функцией. Из этого вытекает, что измерение (а значит и изменение) импульса одной частицы приводит и к измерению импульса другой. Причем увеличение расстояния между этими частицами не запрещается, что опять же противоречит принципу локальности.

Теорема Белла

Человеку, существующему всю свою историю в масштабах макромира, сложно понять законы квантовой механики, которые часто противоречат наблюдениям в макромире. Так зародилась теория скрытых параметров, согласно которой, упомянутое ранее дальнодействие между частицами, может быть вызвано наличием неких изначально скрытых параметров частиц. Проще говоря – измерение одной частицы не приводит к изменению состояния другой, и оба эти состояния возникли вместе с этими частицами, в момент распада исходной частицы. Такое интуитивно понятное объяснение удовлетворило бы человеческий ум.

В 1964-м году Джон Стюарт Белл сформулировал свои неравенства, позже называемые теоремой, которые позволяют провести эксперимент, позволяющий точно определить – имеют ли место некие скрытые параметры. То есть если частицы имели скрытые параметры до своего разделения, то выполнилось бы одно неравенство, а если их состояния связаны и неопределенны до измерения одной из частиц – другое неравенство Белла.

В 1972-м году подобный эксперимент был проведен Фридманом и Клаузером, и результаты указывали на существования неопределенности состояний до измерения. Впрочем, данное явление воспринималось научным сообществом как некий конфуз, который рано или поздно будет разрешен. Однако в 1981-м году был нанесен второй удар по физической теории – эксперимент Аллена Аспе. Этот весьма популярный эксперимент стал последним аргументом в пользу существования квантовой запутанности и так называемого «жуткого дальнодействия». И хотя окончательно поставить точку в этом вопросе не получилось, результаты были настолько убедительны, что ученым пришлось принять такую особенность квантового мира.

Исследования в области квантовой запутанности

Почему вновь поднимается эта давно известная тема? Дело в том, что за последние несколько лет разработки в области квантовых компьютеров, работающих на основе квантовой запутанности, заметно шагнули вперед. Так в марте 2018-го года Google заявила об успешном создании 72-кубитного квантового процессора под названием Bristlecone, который достигает «квантового превосходства». То есть способен выполнять задачи, которые недоступны для обычных компьютеров.

Также летом 2018-го года в журнале Nature была опубликована научная работа, которая рассказывает о создании первого квантового процессора с долговременной памятью. Ранее, в 2015-м году, эта же исследовательская группа из Делфтского технического университета вместе с главой организации QUTech — Рональдом Хэнсоном представили еще более убедительные доказательства существования квантовой запутанности.

Об эксперименте в Делфтском техническом университете

Эксперимент, результаты которого были опубликованы в 2015-м году, происходил следующим образом. В эксперименте использовались алмазные листы с решеткой полостей, которые заполняются азотом. Такая технология была разработана исследователями Калифорнийского университета в Санта-Барбаре и Национальной лаборатории Лоуренса в Беркли в 2010-м году. Два таких кристалла алмаза расположили на расстоянии 1.3 км друг от друга. В результате облучения обоих пластин микроволновым излучением и лазерами электроны этих «алмазных ловушек» переходили в возбужденное состояние и испускали пару фотонов, которые взаимодействовали друг с другом. Как следствие этого взаимодействия – возникала квантовая запутанность между электронами, которые излучали эти фотоны.

Для обнаружения данного явления ученые проводили измерение спинов электронов с разных пластин практически одновременно, что не допустило бы обмен информацией между ними со скоростью света. Однако, как оказалось, спины двух электронов были синхронизированы, что говорит о передачи информации неким образом, который позволяет превысить скорость света. Конечно, сама процедура определения характеристик электронов намного сложнее, и потребовалось провести немало расчетов и сравнить их волновые функции. Несмотря на все сложности эксперимента, он проводился 245 раз в течение 18-ти дней, и был запланирован таким образом, чтобы избежать всех возможных ошибок, как со стороны измерительных приборов, так и со стороны окружающей среды.

Окончательно закроет эту тему будущий крупный эксперимент в Массачусетском технологическом институте в течение ближайших трех лет. Исследовательская группа планирует собирать электромагнитное излучение пульсаров, а также свет, приходящий из дальних галактик. Подобный эксперимент позволит избежать какой-либо связи измерительных приборов и источников сигнала, тем самым устраняя последнюю возможность наличия скрытых параметров.

Разработки QUTech вышли далеко за пределы теоретической физики и двинулись в сторону квантового компьютера. Так в 2012-м году несколько научных групп разработали двухкубитный квантовый процессор на основе вышеупомянутых кристаллов, а в 2018-м – была опубликована работа, в которой исследователи описали созданный ими квантовый процессор с долговременной памятью. Проблема создания такого процессора состояла в том, что связи между квантовыми битами («кубитами») пропадали быстрее, чем ученым удавалось их обнаружить. Очередной эксперимент в Делфтском техническом университете показал, что новый процессор не обладает данной проблемой.

Исследовательская группа использовала вышеупомянутые алмазные пластины, где среди атомов углерода «спрятался» атом азота. Место, в котором располагается атом азота, обладает специфическими свойствами, как если бы в этой ячейке кристаллической решетки находился атом углерода, но в неком «замороженном» состоянии. Такой подход заметно продлевает жизнь алмазным кубитам (300-500 миллисекунд). Кроме того, был разработан и новый метод «запутывания» электронов в этих дефектных точках.

Данная технология не только является прорывной в области квантовых компьютеров, но и приближает нас на шаг к квантовому интернету. Взаимодействие нескольких отдельных квантовых компьютеров позволит организовать между ними сеть, работающую посредством передачи запутанных кубитов. Преимущество состоит в скорости: пусть имеется k квантовых компьютеров, каждый из которых состоит из n кубитов. Тогда для передачи по обычной сети полного состояния одного такого компьютера понадобится 2n бит данных, в то время как для квантовой сети потребуется лишь n кубитов. Запутанность между всеми компьютерами в масштабах целой сети дает преимущество в скорости передачи информации на несколько порядков.

Итоги

Несмотря на квантовый мир, будоражащий множество умов по всему миру, квантовая запутанность сегодня является общепризнанным явлением, которое не только наблюдается экспериментально, но и используется в технологических процессах. Дальнейшее применение квантовой запутанности может вывести человечество на совсем иной уровень развития, с суперкомпьютерами и невообразимо быстрым интернетом.

Относится к «Теории мироздания»

Квантовая запутанность


В инете есть настолько много добротных статей, помогающих выработать адекватн ые представления о "запутанных состояниях", что остается делать наиболее подходящие выборки, строя тот уровень описания, который кажется приемлемым для мировоззре нческого сайта.

Тема статьи: многим близка мысль, что все завораживающие причуды запутанных состояний можно было бы объяснить так. Перемешиваем черный и белый шары, не глядя расфасовываем в коробочки и отправляем в разные стороны. Открываем коробочку на одной стороне, смотрим: черный шар, после чего на 100% уверены, что в другой коробочке - белый. Вот и все:)

Цель статьи - не строгое погружение во все особенности понимания "запутанных состояний", а составление системы общих представлений, с пониманием главных принципов. Именно так и стоит относиться ко всему изложенному:)

Сразу зададим определяющий контекст . Когда специалисты (а не далекие от данной специфики обсуждатели, пусть даже в чем-то ученые) говорят про спутанность квантовых объектов, то имеют в виду не то, что это образует одно целое с некоей связью, а то, что один объект становится по квантовым характеристикам точно такой-же как другой (но не всем, а тем, которые допускают идентичность в паре по закону Паули, так спин у спутанной пары не идентичен, а взаимно комплементарен). Т.е. это никакая не связь и никакой не процесс взаимодействия, пусть и может описываться общей функцией. Это – характеристика состояния, которую можно “телепортировать” от одного объекта, другому (кстати здесь тоже повально часто превратное толкование слова “телепортировать”). Если сразу не определиться в этом, то можно зайти очень далеко в мист ику. Поэтому, в первую очередь, все, кто интересуется вопросом, должны четко быть уверенны в том, что именно имеется в виду под “спутанностью”.

То, ради чего была затеяна эта статья сводится к одному вопросу. Отличие поведения квантовых объектов от классических проявляется в единственно известном пока методе проверки: соблюдается или нет определенное условие проверки - неравенство Белла (ниже подробнее), которое для "запутанных" квантовых объектов ведет себя так, как будто существует связь между посланным в разные стороны объектами. Но связь как бы не реальная, т.к. ни информацию, ни энерги ю передать невозможно.

Мало того, эта связь не зависит ни от расстояния, ни от времени : если два объекта были "спутаны", то, независимо от сохранности каждого из них, второй ведет себя так, как будто связь все же существует (хотя наличие такой связи можно обнаружить только при измерении обоих объектов, такое измерение можно разнести во времени: сначала измерить, потом уничтожить один из объектов, а второй измерить позже. Например, см. Р.Пенроуз ). Понятно, что любой вид "связи" становится трудно понимаемым в этом случае и вопрос встает так: может ли быть таким закон вероятности выпадения измеряемого параметра (который описывается волновой функцией), чтобы на каждом из концов неравенство не нарушалось, а при общей статистике с обоих концов - нарушалось - и без какой-либо связи, естественно, кроме связи актом общего возникновения.

Заранее дам ответ: да, может, при условии, что эти вероятности - не "классические", а оперируют комплексными переменными для описания "суперпозиции состояний" - как бы одновременного нахождения всех возможных состояний с определенной вероятностью для каждого.

Для квантовых объектов описатель их состояния (волновая функция) - именно таков. Если говорить об описании положения электрона, то вероятность его нахождения определяет топологию "облака" - форму электронной орбитали. В чем состоит различие между классикой и квантами?

Представим себе быстро вращающееся велосипедное колесо. Где-то на нем прикреплен красный диск бокового отражателя фар, но мы видим лишь более плотную тень размытости в этом месте. Вероятность того, что сунув палку в колесо, отражатель остановится в определенном положении от палки просто определяема: одна палка - одно какое-то положение. Сунем две палки, но остановит колесо только та, которая окажется чуть раньше. Если мы будем стараться сунуть палки совершенно одновременно , добиваясь, чтобы не было времени между концами палки, соприкоснувшимися с колесом, то появится некоторая неопределенность. В "не было времени" между взаимодействиями с сутью объекта - вся суть понимания квантовых чудес:)

Скорость "вращения" того, что определяет форму электрона (поляризации - распространения электрического возмущения) равна предельной скорости, с которой вообще что-то может распространяться в природе (скорости света в вакууме). Мы знаем вывод теор ии относительности: в этом случае время для этого возмущения становится нулевым: нет ничего в природе, что могло бы осуществиться между любыми двумя точками распространения этого возмущения, времени для него не существует. Это значит, что возмущение способно взаимодействовать с любыми другими влияющими на него "палками" без затраты времени - одновременно . И вероятность того, какой результат будет получен в конкретной точке пространства при взаимодействии, должен вычисляться вероятностью, учитывающей этот релятиви стский эффект: Из-за того, что для электрона нет времени, он не способен выбрать ни малейшего отличия между двумя "палками" при взаимодействии с ними и делает это одновременно со своей "точки зрения": электрон проходит в две щели одновременно с разной плотностью волны в каждой и потом интерферирует между самим собой как две наложившиеся волны.

Вот в чем различие в описаниях вероятностей в классике и квантах: квантовые корреляции "сильнее" классических. Если результат выпадения монетки зависит от множества влияющих факторов, но в целом они однозначно детерминированы так, что стоит только сделать точный автомат для выбрасывания монеток, и они станут падать одинаково, - случайность "исчезла". Если же сделать автомат, тыкающий в элекронное облако, то результат определится тем, что каждый тычек будет попадать во что-то всегда, только с разной плотностью сущности электрона в этом месте. Других факторов, кроме статического распределения вероятности нахождения измеряемого параметра в электроне нет и это - уже детерминизм совсем другого рода, чем в классике. Но это - тоже детерминизм, т.е. он всегда вычисляем, воспроизводим, только с особенностью, описываемой волновой функцией. При этом такой квантовый детерминизм касается лишь целостного описания волны кванта. Но, в виду отсутствия собственного времени для кванта, он взаимодействует абсолютно случайно, т.е. нет никакого критерия заранее предсказать результат измерения совокупности его параметров. В этом смысл е (в классическом представлении) он абсолютно недетерминирован.

Электрон реально и в самом деле существует в виде статического образования (а не крутящейся по орбите точки) - стоячей волны электрического возмущения, у которой существует еще один релятиви стский эффект: перпендикулярно основной плоскости "распространения" (понятно почему в кавычках:) электрического поля возникает также статическая область поляризации, которая способна влиять на такую же область другого электрона: магнитный момент. Электрическая поляризация в электроне дает эффект электрического заряда, его отражение в пространстве в виде возможности влияния на другие электроны - в виде магнитного заряда, который не бывает сам по себе без электрического. И если в электронейтральном атоме электрические заряды скомпенсированы зарядами ядер, то магнитные могут оказаться ориентированы в одну сторону и мы получим магнит. Более глубокие представления об этом - в статье .

То, в какую сторону будет направлен магнитный момент электрона - называется спином. Т.е. спин - проявление способа наложения волны электрической деформации на себя с образованием стоячей волны. Числовое значение спина соответствует характеристике наложения волны на себя.У электрона: +1/2или -1/2 (знак символизирует направление бокового смещения поляризации - "магнитный" вектор).

Если на внешнем электронном слое атома есть один электрон и вдруг к нему присоединяется еще один (образование ковалентной связи), то они, как два магнитика, тут же встают в позицию 69, образуя спаренную конфигурацию с энерги ей связи, которую нужно разорвать, чтобы опять разделить эти электроны. Общий спин такой пары - 0.

Спин - тот параметр, который играет важную роль при рассмотрении запутанных состояний. У свободно распространяющегося электромагнитного кванта суть условного параметра "спин" все та же: ориентация магнитной составляющей поля. Но она уже не статична и не приводит к возникновению магнитного момента. Чтобы ее зафиксировать нужен не магнит, а щель поляризатора.

Для затравки представлений о квантовых запутанностях предлагаю прочесть популярную и небольшую статью Алексея Левина : Страсть на расстоянии . Пожалуйста, перейдите по ссылке и прочтите до того, как продолжать:)

Итак, конкретные параметры измерения реализуются только при измерении, а до того они существовали в виде того распределения вероятностей, которое составляло зримую макромиром статику релятиви стких эффектов динамики распространения поляризации микромира. Понять суть происходящего в квантовом мире - означает проникнуться в проявления таких релятиви стких эффектов, которые на деле придают квантовому объекту свойства быть одновременно в разных состояниях до момента конкретного измерения.

"Запутанное состояние" это - вполне детерминированное состояние двух частиц, обладающих настолько одинаковой зависимостью описания квантовых свойств, что на обоих концах проявляются согласованные корреляции, в силу особенностей сути квантовой статики, имеющих согласованное поведение. В отличие от макро статистики, в квантовой статистике возможно сохранение таких корреляций у разнесенных в пространстве и времени ранее согласованных по параметрам объектов. Это проявляется в статистике выполнения неравенств Белла.

Чем отличается волновая функция (наше абстрактное описание) незапутанных электронов двух атомов водорода (при том, что ее параметрами будут общепринятые квантовые числа)? Ничем, кроме того, что спин неспаренного электрона случаен без нарушения неравенств Белла. В случае образования спаренной шаровой орбитали в атоме гелия, или в ковалентных же связях двух атомов водорода, с образованием молекулярной орбитали, обобщенной двумя атомами, параметры двух электронов оказываются взаимно согласованными. Если запутанные электроны расщепить, и они начинают движение в разные стороны, то в их волновой функции появляется параметр, описывающий смещение плотности вероятности в пространстве от времени - траекторию. И это вовсе не означает размазанности функции в пространстве просто потому, что вероятность нахождения объекта становится нулевой на некотором от него удалении и позади не остается ничего, чтобы указывало на вероятность нахождения электрона. Тем более это очевидно в случае разнесения пары во времени. Т.е. возникают два локальных и независимых описателя, смещающихся в противоположных направлениях частиц. Хотя все еще можно использовать один общий описатель, - право того, кто формализ ует:)

Кроме всего, окружение частиц не может оставаться безучастным и так же подвергается модификации: описатели волновой функции частиц окружения изменяются и участвуют в результирующей квантовой статистике своим влиянием (порождая такие явления как декогеренция). Но обычно почти никому в голову не приходит описывать это общей волновой функцией, хотя и это возможно.

Во множестве источников можно подробно ознакомиться с этими явлениями.

М.Б.Менский пишет:

"Одна из целей данной статьи... обосновать точку зрения, что существует формулировка квантовой механики, в которой не возникает никаких парадоксов и в рамках которой можно ответить на все вопросы, которые обычно задают физики. Парадоксы возникают лишь тогда, когда исследователь не удовлетворяется этим "физическим" уровнем теор ии, когда он ставит такие вопросы, которые в физике ставить не принято, другими словами, - когда он берет на себя смелость попытаться выйти за пределы физики . ...Специфические черты квантовой механики, связанные с запутанными состояниями, впер­вые были сформулированы в связи с ЭПР-парадоксом, однако в настоящее время они не воспринимаются как парадоксальные. Для людей, профессионально работаю­щих с квантовомеханическим формализ мом (т.е. для большинства физиков) нет ничего парадоксального ни в ЭПР-парах, ни даже в очень сложных запутанных состояниях с большим числом слагаемых и большим числом факторов в каждом слагаемом. Результаты любых опытов с такими состояниями, в принципе,легко просчитываются (хотя технические трудности при рас­чете сложных запутанных состояний, конечно, возможны). "

Хотя, надо сказать, в рассуждениях о роли сознания, осознанного выбора в квантовой механике Менский оказывается тем самым берущим " на себя смелость попытаться выйти за пределы физики ". Это напоминает попытки подступиться к явлениям психи ки . Как квантовый профессионал Менский хорош, но в механизмах психи ки он, как и Пенроуз - наивен.

Очень кратко и условно (только для схватывания сути) об использовании запутанных состояний в квантовой криптографии и телепортации (т.к. именно это поражает воображение благодарных зрителей).

Итак, криптография. Нужно передать последовательность 1001

Используем два канала. По первому пускаем запутанную частицу, по второму - информацию о том, как нужно интерпретировать полученные данные в виде одного бита.

Предположим, что имеется альтернатива возможного состояния используемого квантовомеханического параметра спин в условных состояниях: 1 или 0. При этом вероятность их выпадений с каждой выпущенной парой частиц - воистину случайна и не передает никакого смысл а.

Первая передача. При измерении здесь вышло, что у частицы состояние 1. Значит у другой - 0. Чтобы на том конце получить требуемую единицу передаем бит 1. Там мерят состояние частицы и, чтобы узнать, что оно означает, складывают с переданной 1. Получают 1. Заодно проверяют по белу, что спутанность не была нарушена, т.е. инфа не перехвачена.

Вторая передача. Вышло опять состояние 1. У другой 0. Передаем инфо - 0. Складываем, получаем требуемую 0.

Третья передача. Вышло состояние здесь 0. Там, значит - 1. Чтобы получить 0, передаем 0. Складываем, получаем 0 (в младшем разряде).

Четвертое. Здесь - 0, там - 1, нужно чтобы было интерпретировано как 1. Передаем инфу - 0.

Вот в таком принципе. Прехват инфо канала бесполезен из-за совершенно некоррелируемой последовательсти (шифрование ключем состояния первой частицы). Перехват запутанного канала - нарушает прием и обнаруживается. Статистика передачи с обоих концов (на приемном конце имеют все нужные данные по передаваемому концу) по Беллу определяет корректность и неперехваченность передачи.

В этом состоит и телепортация. Никакого произвольного навязывания состояния частице там не происходит, а происходит только предсказание того, какое будет это состояние после того (и только после того) как здесь частица будет выведена из связи измерением. И тогда говорят типа, что произошла передача квантового состояния с разрушением комплементарного состояния в исходной точке. Получив там инфу о состоянии здесь, можно тем или иным способом скорректировать квантовомеханический параметр так, чтобы он оказался идентичным такому здесь, но здесь его уже не будет, и говорят о выполнении запрета на клонирование в связанном состоянии.

Похоже, что никакие аналоги этих явлений в макромире, никакие шары, яблоки и т.п. от классической механики не могут послужить для интерпретации проявления такого характера квантовых объектов (на самом деле принципиальных препятствий этому нет, что будет показано ниже в итоговой ссылке). В этом - главная трудность для тех, кто хочет получить зримое "объяснение". Это не значит, что такое не представляемо, как заявляется подчас. Это значит, что нужно довольно кропотливо поработать над релятиви стками представлениями, которые играют определяющую роль в квантовом мире и связывают мир квантов с макро миром.

Но и это не обязательно. Вспомним главную задачу представления: каким должен быть закон материализации измеряемого параметра (который описывается волновой функцией), чтобы на каждом из концов неравенство не нарушалось, а при общей статистики с обоих концов - нарушалось. Существует множество интерпретаций для понимания этого, использующих вспомогательные абстракции. Они говорят об одном и том же разными языками таких абстракций. Из них две - наиболее весомые по разделяемой среди носителей представлений корректности. Надеюсь, что после сказанного будет понятно, что имеется в виду:)

Копенгагенская интерпретация из статьи про парадокс Эйнштейна - Подольского - Розена:

" (ЭПР-парадокс) - кажущийся парадокс... В самом деле, представим себе, что на двух планетах в разных концах Галактики есть две монетки, выпадающие всегда одинаково. Если запротоколировать результаты всех подбрасываний, а потом сравнить их, то они совпадут. Сами же выпадания случайны, на них никак нельзя повлиять. Нельзя, например, договориться, что орёл - это единица, а решка - это ноль, и передавать таким образом двоичный код. Ведь последовательность нулей и единицы будет случайной и на том и на другом «конце провода» и не будет нести никакого смысл а.

Получается, что парадоксу есть объяснение, логически совместимое и с теор ией относительности, и с квантовой механикой.

Можно подумать, что это объяснение слишком неправдоподобно. Это настолько странно, что Альберт Эйнштейн никогда не поверил в «бога, играющего в кости». Но тщательные экспериментальные проверки неравенств Белла показали, что в нашем мире есть-таки нелокальные случайности.

Важно подчеркнуть одно уже упомянутое следствие этой логики: измерения над запутанными состояниями только тогда не будут нарушать теор ию относительности и причинность, если они истинно случайны. Не должно быть никакой связи между обстоятельствами измерения и возмущением, ни малейшей закономерности, потому что в противном случае появилась бы возможность мгновенной передачи информации. Таким образом, квантовая механика (в копенгагенской интерпретации) и существование запутанных состояний доказывают наличие индетерминизма в природе. "

В статистической интерпретации это показывается через понятие "статистических ансамблей" (тот же ):

С точки зрения статистической интерпретации, действительными объектами изучения в квантовой механике являются не единичные микрообъекты, а статистические ансамбли микрообъектов, находящихся в одинаковых макроусловиях. Соответственно, фраза «частица находится в таком-то состоянии» на самом деле означает «частица принадлежит такому-то статистическому ансамблю» (состоящему из множества аналогичных частиц). Поэтому выбор в исходном ансамбле того или иного подансамбля существенно меняет состояние частицы, даже если при этом не происходило непосредственного воздействия на неё.

В качестве простейшей иллюстрации рассмотрим следующий пример. Возьмём 1000 окрашенных монет и бросим их на 1000 листов бумаги . Вероятность того, что на случайно выбранном нами листе отпечатался «орёл», равна 1 / 2. Между тем для листов, на которых монеты лежат «решкой» вверх, та же самая вероятность равна 1 - то есть у нас имеется возможность косвенно устанавливать характер отпечатка на бумаге, глядя не на сам лист, а только на монету. Однако ансамбль, связанный с таким «косвенным измерением», совершенно отличен от исходного: он содержит уже не 1000 листов бумаги , а лишь около 500!

Таким образом, опровержение соотношения неопределённостей в «парадоксе» ЭПР было бы действительным лишь в том случае, если бы для исходного ансамбля оказался возможным одновременный выбор непустого подансамбля и по признаку импульса, и по признаку пространственных координат. Однако как раз невозможность такого выбора и утверждается соотношением неопределённостей! Иначе говоря, «парадокс» ЭПР на деле оказывается порочным кругом: он заранее предполагает неверность опровергаемого факта.

Вариант со «сверхсветовым сигналом» от частицы A к частице B также основан на игнорировании того обстоятельства, что распределения вероятностей значений измеряемых величин характеризуют не конкретную пару частиц, а содержащий огромное количество таких пар статистический ансамбль. Тут в качестве аналогичной можно рассмотреть ситуацию, когда окрашенная монета бросается на лист в темноте, после чего лист вытаскивается и запирается в сейф. Вероятность того, что на листе отпечатался «орёл» apriori равна 1 / 2. И то обстоятельство, что она немедленно превратится в 1, если мы зажжём свет и убедимся, что монета лежит «решкой» вверх, нисколько не свидетельствует о способности нашего взгляда мист ическим образом влиять на запертые в сейфе предметы.

Подробнее: А.А.Печенкин Ансамблевые интерпретации квантовой механики в США и СССР .

И еще одна интерпретация из http://ru.philosophy.kiev.ua/iphras/library/phnauk5/pechen.htm :

Модальная интерпретация ван Фраассена исходит из того, что состояние физической системы изменяется только каузально, т.е. в соответствии с уравнением Шредингера, однако это состояние не детерминирует однозначно значения физических величин, обнаруживаемые при измерении.

Поппер приводит здесь свой излюбленный пример: детский биллиард (уставленная иголками доска, по которой сверху скатывается металлический шарик, символизирующий физическую систему, - сам биллиард символизирует экспериментальное устройство). Когда шарик наверху биллиарда, мы имеем одну диспозицию, одну предрасположенность достичь какой-либо точки внизу доски. Если же мы зафиксировали шарик где-то в середине доски, мы изменили спецификацию эксперимента и получили новую предрасположенность. Квантово-механический индетерминизм сохраняется здесь в полном объеме: Поппер оговаривает, что биллиард не представляет собой механическую систему. Мы лишены возможности прослеживать траекторию шарика. Но “редукция волнового пакета” - это не акт субъективного наблюдения, это сознательное переопределение экспериментальной ситуации, сужение условий опыта.

Подведем общее резюме фактов

1. Несмотря на абсолютную случайность выпадения парамерта при измерении в массе возникающих спутанных пар частиц, в каждой такой паре проявляется согласованность: если одна частица в паре оказывается со спином 1, то другая частица в паре - со спином противоположным. Это в принципе понятно: раз в спаренном состоянии не может быть двух частиц, имеющих одинаковый спин в одном энергетическом состоянии, то при их расщеплении, если согласованность сохраняется, то и спины оказываются все так же согласованными. Стоит определить спин одной, как станет известен спин другой, при том, что случайность спина в измерениях с любой из сторон - абсолютная.

Коротко проясню невозможность полностью одинаковости состояний двух частиц в одной месте пространства-времени, которая в модели строения электронной оболочки атома называется принципом Паули, а в квантовомеханическом рассмотрении согласованных состояний - принципом невозможности клонирования запутанных объектов.

Есть нечто (пока непознанное), реально препятствующее возможности кванту или соответствующей ему частице пребывать в одном локальном состоянии с другим - полностью идентичным по квантовым параметрам. Это реализуется, например, в эффекте Казимира, когда виртуальные кванты между пластинами могут иметь длину волны не более зазора. И особенно наглядно это реализуется в описании атома, когда электроны данного атома не могут иметь во всем идентичные параметры, что аксиом атически формализ овано принципом Паули.

На первом, ближайшем слое могут находится только 2 электрона в виде сферы (s -электроны). Если их два, то они - с разными спинами и спарены (запутаны), образуя общую волну с энерги ей связи, которую нужно приложить, чтобы разорвать эту пару.

Во втором, более удаленном и более энергетическом уровне могут быть 4 "орбитали" по два спаренных электрона в виде стоячей волны формой как объемная восьмерка (p-электроны). Т.е. большая энерги я занимает большее пространство и позволяет соседствовать уже нескольким связанным парам. От первого слоя второй отличается энергетически на 1 возможный дискрет энергетического состояния (более внешние электроны, описывая пространственно большее облако, обладают и большей энерги ей).

Третий слой уже пространственно позволяет иметь 9 орбит в форме четырехлистника (d -электроны), четвертый - 16 орбит - 32 электрона, форма которых тоже напоминает объемные восьмерки в разных комбинациях ( f -электроны).

Формы электронных облаков:

а – s-электроны; б – р-электроны; в – d-электроны.

Вот такой набор дискретно различающихся состояний - квантовые числа - характеризуют возможные локальные состояния электронов. И вот что из этого получается.

Когда два электрона с разными спинами одного энергетического уровня (хотя это принципиально не обязательно: http://www.membrana.ru/lenta/?9250 ) спариваются, то образуется общая "молекулярная орбиталь" с пониженным энергетическим уровнем за счет энерги и связи. Два атома водорода, имеющие по неспаренному электрону, образуют общее перекрытие этих электронов - (простую ковалентную) связь. Пока она есть - воистину два электрона имеют общую согласованную динамику - общую волновую функцию. До каких пор? "Температура" или нечто другое, способное компенсировать энерги ю связи, рвет ее. Атомы разлетаются с электронами уже не имеющими общей волны, но все еще находящимися в комплементарном, взаимосогласованном состоянии спутывания. Но связи уже нет:) Вот тот - момент, когда не стоит более говорить об общей волновой функции, хотя вероятностные характеристики в терминах квантовой механики остаются такими, как если бы эта функция продолжала описывать общую волну. Это как раз и означает сохранение способности к проявлению согласованной корреляции.

Способ получения запутанных электронов через их взаимодействие описан: http://www.scientific.ru/journal/news/n231201.html или популяно-схематично - в http://www.membrana.ru/articles/technic/2002/02/08/170200.html : " Чтобы создать "соотношение неопределённостей" электронов, то есть "запутать" их, нужно убедиться, что они идентичны во всех отношениях, после чего выстрелить этими электронами в расщепитель луча (beam splitter). Механизм "расщепляет" каждый из электронов, приводя их в квантовое состояние "суперпозиции", вследствие чего электрон с равной долей вероятности будет двигаться по одному из двух путей. ".

2. При статистике измерений с обеих сторон взаимная согласованность случайностей в парах может приводить к нарушению неравенства Белла в определенных условиях. Но не за счет использования некоей особой, пока непознанной квантовомеханической сущности.

Следующая небольшая статья (на основе представлений, изложенных Р.Пнроузом) позволяет проследить (показать принцип, пример) как это возможно: Относительность неравенств Белла или Новый ум голого короля . Так же это же показано в работе А.В.Белинского, опубликованной в Успехи физических наук: Теорема белла без предположения о локальности . Дргуая работа А.В.Белинского для размышлени я заинтересовавшимися: Теорема Белла для трихотомных наблюдаемых , а так же обсуждение с д.ф.-м.н., проф., акад. Валерием Борисовичем Морозововым (общепризнанный корифей форумов физфака ФРТК-МФТИ и "дубинушки"), где Морозов предлагает к рассмотрению обе эти работы А.В.Белинского: Опыт Аспекта: вопрос к Морозову . И в дополнение темы о возможности нарушений неравенств Белла без введения какого-либо дальнодействия: Моделирование по неравенству Белла .

Обращаю внимание, что "Относительность неравенств Белла или Новый ум голого короля", как и "Теорема белла без предположения о локальности" в контекст е данной статьи не претендуют на описание механизма квантовомеханической запутанности. Задача показана в последней фразе первой ссылки: "Ссылаться на нарушение неравенств Белла, как на бесспорное опровержение любой модели локального реализма, нет оснований." т.е. граница ее использования - теор ема, озвученная вначале: "Могут существовать модели классической локальности, в которых будут нарушаться неравенства Белла.". Об этом - дополнительные пояснения в обсуждении .

Приведу и модель от себя.
"Нарушение локального реализма" - всего лишь релятиви стский эффект.
Никто (нормальный) не спорит с тем, что для системы, движущейся с предельной скоростью (скорость света в вакууме) нет ни пространства, ни времени (преобразование Лоренца в этом случае дает нулевое время и пространство), т.е. для кванта он находится сразу и здесь и там, каким бы далеким ни было это там.
Понятно, что спутанные кванты обладают вот такой своей точкой отсчета. А электроны - те же кванты в состоянии стоячей волны, т.е. существующие здесь и там сразу на все время существования электрона. Все свойства квантов оказываются предрешенными для нас, тех, кто воспринимает это извне вот почему. Мы состоящим, в конечном счете из квантов, которые и здесь и там. Для них скорость распространения взаимодействия (предельная скорость) - бесконечно высока. Но все эти бесконечности разные также как в разной длине отрезков хоть и бесконечное число точек у каждого, но соотношение этих бесконечностей дает соотношение длин. Вот как для на нас появлятеся время и пространство.
Для нас в экспериментах локальный реализм нарушается, для квантов - нет.
Но это расхождение никак не влияет на реальность потому, что мы не можем воспользоваться такой бесконечной скоростью практически. Ни информация, ни, тем более материя, не передается бесконечно быстро при "квантовой телепортации".
Так что все это - приколы релятиви стских эффектов, не более того. Их можно использовать в квантовой криптографии или еще как-то, ни нельзя использовать для реального дальнодействия.

Смотрим зрительно суть того, что показывают неравенства Белла.
1. Если ориентация измерителей на обоих концах одинаковая, то результат измерения спина на обоих концах всегда будет противоположным.
2. Если ориентация измерителей противоположная, то результат будет совпадающим.
3. Если ориентация левого измерителя отличается от ориентации правого менее, чем на определенный угол, то будет реализовцваться пункт 1 и совпадения окажутся в пределах вероятности, предсказанной Беллом для независимых частиц.
4. Если угол превышает, то - пункт 2 и совпадения окажутся больше вероятности, предсказанной Беллом.

Т.е. при меньшем угле мы будем получать преимущественно противоположные значения спинов, а при большем - преимущественно совпадающие.
Почему так происходит со спином можно представить, имея в виду, что спин электрона - магнитик, и измеряется так же ориентацией магнитного поля (или в свободном кванте спин - направление поляризации и измеряется ориентацией щели, через которую должна прийтись плоскость поворота поляризации).
Ясно, что отправив магнитики, которые были вначале сцеплены и при отправке сохранили свою взаимную ориентацию, мы магнитным полем при измерении будем влиять на них (доворачивая в ту или иную сторону) так, как это происходит в квантовых парадоксах.
Понятно, что встречая магнитное поле (в том числе спин другого электрона) спин обязательно ориентируется в соответствии с ним (взаимно противоположно в случае со спином другого электрона). Поэтому и говорят, что "ориентация спина возникает лишь в ходе измерения", но при этом она зависит от своего первоначального положения (в какую сторону довращаться) и направления влияния измерителя.
Ясно, что никаких дальнодействий для этого не требуется, так же как не требуется заранее прописывать такое поведение в первоначальном состоянии частиц.
У меня есть основания полагать, что пока что при измерениях спина отдельных электронов не учитываются промежуточные состояния спина, а лишь преимущественно - по измерительному полю и против поля. Примеры методов: , . Стоит обратить внимание и на дату освоения этих методов, более позднюю, чем вышеописаннеы эксперименты.
Приведенная модель, конечно, упрощена (в квантовых явлениях спин - не совсем те вещесвтенные магнитики, хотя именно они обеспечивают все наблюдаемые магнитные явления) и не учитывает множество нюансов. Поэтому он - не является описателем реального явления, а показывает только возможный принцип. И еще он показывает как плохо просто доверяться описательному формализ му (формулам) без понимания сути происходящего.
При этом теор ема Белла верна в формулировке из стати Аспека : "невозможно найти теор ию с дополнительным параметром, удовлетворяющую общему описанию, которая воспроизводит все предсказания квантовой механики." а вовсе не в формулировке Пенроуз а: " оказывается, что воспроизвести предсказания квантовой теор ии таким путем (неквантовым) невозможно.". Понятно, чтобы доказать теор ему по Пенроуз у, нужно доказать, что никакими моделями, кроме квантовомеханического эксперимента, нарушения неравенств Белла не возможно.

Это - несколько утрированный, можно сказать вульгарный пример интерпретации, просто для того, чтобы показать, как можно обмануться в таких результатах. Но наведем ясный смысл на то, что хотел доказать Белл и что получается на самом деле. Белл создал опыт, показывающий, что в запутанности нет заранее существующего "алгоритм а", заранее заложенной корреляции (на чем настаивали в то время противники, говоря о том, есть некие скрытые параметры, определяющие такую корреляцию). И тогда вероятности в его опытах должны быть выше, чем вероятность на самом деле случайного процесса (почему хорошо описано ниже).
НО на самом-то деле просто имеют одинаковые вероятностные зависимости. Что это значит? Это значит, что вовсе не предопределенная, заданная связь между фиксацией параметра измерением имеет быть место, а такой результат фиксации происходит от того, что процессы обладают одинаковой (комплементарной) вероятностной функцией (что, в общем-то прямо проистекает из квантовомеханических понятий), суть которой - реализация параметра при фиксации, который был не определен в виду отсутствия в его "системе отсчета" пространства и времени в силу максимально возможной динамики его существования (релятиви стский эффект, формализ уемый Лоренцовыми преобразованиями, см. Вакуум, кванты, вещество).

Вот как описывает методолог ическую суть опыта Белла Брайан Грин в книге Ткань космоса . У него каждый из двоих игроков получили множество ящичков, каждый с тремя дверцами. Если первый игрок открывает ту же дверцу, что и второй в ящичке с одинаковым номером, то он вспыхивает одинаковым светом: красным или синим.
Первый игрок Скалли предполагает, что это обеспечивается заложенной в каждую пару программой цвета вспышки в зависимости от дверцы, второй игрок Малдер считает, что вспышки следуют равновероятно, но как-то связаны (нелокальным дальнодействием). По мнению второго игрока все решает опыт: если программа - то вероятность одинаковых цветов при случайном окрывании разных дверок должна быть больше 50%, вопреки истиной случайной вероятности. Он привел пример почему:
Просто для конкретности представим, что программа для сферы в отдельной коробочке производит синий (1-я дверца), синий (2-я дверца) и красный (3-я дверца) цвета. Теперь, поскольку мы оба выбираем одну из трех дверок, всего имеется девять возможных комбинаций дверок, которые мы можем выбрать для открывания для данной коробочки. Например, я могу выбрать верхнюю дверку на моей коробочке, тогда как ты можешь выбрать боковую дверку на твоей коробочке; или я могу выбрать фронтальную дверку, а ты можешь выбрать верхнюю дверку; и так далее."
"Да, конечно." – Скалли подскочила. – "Если мы назовем верхнюю дверку 1, боковую дверку 2, а фронтальную дверку 3, то девять возможных комбинаций дверок это просто (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2) и (3,3)."
"Да, все верно," – продолжает Малдер. – "Теперь важный момент: Из этих девяти возможностей отметим, что пять комбинаций дверок – (1,1), (2,2), (3,3), (1,2) и (2,1) – приводят к тому результату, что мы видим, как сферы в наших коробочках вспыхивают одинаковыми цветами.
Первые три комбинации дверок те самые, в которых мы выбираем одинаковые дверки, и, как мы знаем, это всегда приводит к тому, что мы видим одинаковые цвета. Остальные две комбинации дверок (1,2) и (2,1) приводят к тем же самым цветам, поскольку программа диктует, что сферы будут мигать одним цветом – синим – если или дверка 1 или дверка 2 открыты. Итак, поскольку 5 больше, чем половина от 9, это значит, что для более чем половины – более чем 50 процентов – возможных комбинаций дверок, которые мы можем выбрать для открывания, сферы будут вспыхивать одинаковым цветом."
"Но подожди," – протестует Скалли. – "Это только один пример особой программы: синий, синий, красный. В моем объяснении я предполагала, что коробочки с разными номерами могут и в общем случае будут иметь разные программы."
"В действительности, это не имеет значения. Вывод действует для любых из возможных программ.

И это - в самом деле так, если имеем дело с программой. Но вовсе не так, если имеем дело со случайными зависимостями для многих опытов, но каждая из этих случайностей имеет один и тот же вид в каждом опыте.
В случае электронов, когда они были вначале связаны в пару, что обеспечивает их полностью зависимые спины (взаимно противоположные) и разлетелись, эта взаимозависимость, конечно же, сохраняется при полной общей картине истинной вероятности выпаданий и в том, что заранее сказать как сложились спины двух электронов в паре невозможно до определения одного из них, но они "уже" (если так можно сказать в отношении того, что не имеет своей метрики времени и пространства) имеют определенное взаиморасположение.

Далее в книге Брайан Грина:
есть способ изучить, не вступили ли мы неосторожно в конфликт с СТО. Общим для материи и энерги и свойством является то, что они, переносясь с места на место, могут передавать информацию. Фотоны, путешествуя от радиопередающей станции к вашему приемнику, переносят информацию. Электроны, путешествуя через кабели Интернета к вашему компьютеру, переносят информацию. В любой ситуации, где нечто – даже нечто неидентифи цированное – подразумевается движущимся быстрее скорости света, безошибочным тестом будет спросить, передает ли оно или, как минимум, может ли оно передавать информацию. Если ответ нет, проходят стандартные рассуждения, что ничто не превышает скорости света и СТО остается неоспоренной. На практике этот тест физики часто применяют для определения, не нарушает ли некоторый тонкий процесс законы СТО. Ничто не пережило этот тест.

Что же касается подхода Р.Пенроуз а и т.п. интерпретаторов, то из его работы Penrouz.djvu постараюсь выделить то основополагающее отношение (мировоззре ние), которое напрямую приводит к мист ическим взглядам о нелокальности (с моими комментарниями - черным цаетом):

Необходимо было отыскать способ, который позволил бы отделять истину от предположений в математике, - некую формальную процедуру, применив которую можно было бы с уверенностью сказать, является данное математическое утверждение истинным или нет (возражение см. Метод Аристотеля и Истина, критерии истины) . Пока эта задача должным образом не разрешена, вряд ли можно всерьез надеяться на успех в решении других, значительно более сложных, задач - тех, что касаются природы движущих миром сил, какие бы взаимоотношения эти самые силы с математической истиной ни связывали. Осознание того, что ключом к пониманию Вселенной является неопровержимая математика, является, пожалуй, первым из важнейших прорывов в науке вообще. О математических истинах самого разного рода догадывались еще древние египтяне и вавилоняне, однако первый камень в фундамент математического понимания...
... людей впервые появилась возможность формулировать достоверные и заведомо неопровержимые утверждения - утверждения, истинность которых не вызывает сомнений и сегодня, несмотря на то что наука с тех времен шагнула далеко вперед. Людям впервые приоткрылась поистине вневременная природа математики.
Что же это такое - математическое доказательство? В математике доказательством называют безупречное рассуждение, использующее лишь приемы чистой логики (чистой логики не существует. Логика - аксиом атическая формализ ация найденных в природе закономерностей и взаимосвязей) позволяющее сделать однозначный вывод о справедливости того или иного математического утверждения на основании справедливости каких-либо других математических утверждений, либо заранее установленной аналогичным образом, либо не требующей доказательства вовсе (особые элементарные утверждения, истинность которых, по общему мнению, самоочевидна, называются аксиом ами). Доказанное математическое утверждение принято называть теор емой. Вот тут я его не понимаю: есть ведь и просто высказанные, но не доказанные теор емы.
... Объективные математические понятия следует представлять как вневременные объекты; не нужно думать, будто их существование начинается в тот момент, как только они в том или ином виде возникают в человеческом воображении.
... Таким образом, математическое существование отличается не только от существования физического, но и от того существования, которым способно наделить объект наше сознательное восприятие. Тем не менее оно явно связано с двумя последними формами существования - т. е. с физическим и ментальным существованием связь - вполне физическое понятие, что имеет в виду здесь Пенроуз ? - причем соответствующие связи настолько же фундаментальны, насколько и загадочны.
Рис. 1.3. Три «мира» - платоновский математический, физический и ментальный - и три связывающие их фундаментальные загадки...
... Итак, согласно изображенной на рис. 1.3 схеме, весь физический мир управляется математическими законами. В последующих главах книги мы увидим, что имеются веские (хоть и неполные) свидетельства в поддержку такой точки зрения. Если верить этим свидетельствам, то приходится признать, что все, существующее в физической Вселенной, вплоть до самых мельчайших мелочей, и в самом деле управляется точными математическими принципами - может быть, уравнениями. Тут я просто тихо балдею....
...Если это так, то и наши с вами физические действия целиком и полностью подчинены такому всеобщему математическому контролю, хотя «контроль» этот все же допускает определенную случайность в поведении, управляемую строгими вероятностными принципами.
Многие люди от таких предположений начинают чувствовать себя очень неуютно; у меня и у самого, признаться, эти мысли вызывают некоторое беспокойство.
... Возможно, в некотором смысл е три мира вовсе не являются отдельными сущностями, но лишь отражают различные аспекты некоей более фундаментальной ИСТИНЫ (выделил я) , описывающей мир, как целое, - истины, о которой в настоящее время мы не имеем ни малейшего понятия. - чистая мист ика....
.................
Оказывается даже, что на экране имеются области, не достижимые для частиц, испускаемых источником, несмотря на тот факт, что частицы могли вполне успешно попадать в эти области, когда была открыта лишь одна из щелей! Хотя пятна появляются на экране по одному в локализованных положениях и хотя каждой встрече частицы с экраном можно сопоставить определенный акт испускания частицы источником, поведение частицы между источником и экраном, включая неоднозначность, связанную с наличием двух щелей в барьере, подобно поведению волны, при котором волна-частица при столкновении с экраном чувствует сразу обе щели. Более того (и это особенно важно для наших непосредственных целей), расстояние между полосами на экране соответствует длине волны Л нашей волны-частицы, связанной с импульсом частиц р прежней формулой ХХХХ.
Всё это вполне возможно, скажет трезвомыслящий скептик, но это еще не заставляет нас проводить такое абсурдно выглядящее отождествление энерги и-импульса с каким-то оператором! Да, именно так и хочется сказать: оператор - лишь формализ м для описания явления в определенных его рамках, а не тождество с явлением.
Конечно, не заставляет, но должны ли мы отворачиваться от чуда, когда оно является нам?! В чем же состоит это чудо? Чудом является то, что эта кажущаяся абсурдность экспериментального факта (волны оказываются частицами, а частицы - волнами) может быть приведена в систему с помощью красивого математического формализ ма, в котором импульс действительно отождествляется с «дифференцированием по координате», а энерги я - с «дифференцированием по времени».
... Всё это прекрасно, но как быть с вектором состояния? Что мешает признать, что он представляет реальность? Почему физики зачастую крайне неохотно принимают такую философскую позицию? Не просто физики, а те, у кого все в порядке с целостным мировоззре нием и не склонны вестись на недоопределнные рассуждения.
.... При желании можно представить себе, что волновая функция фотона выходит из источника в виде четко очерченного волнового пакета малых размеров, затем, после встречи с расщепителем луча, она делится на две части, одна из которых отражается от расщепителя, а другая проходит сквозь него, например, в перпендикулярном направлении. В обоих мы заставляли волновую функцию разделиться на две части в первом расщепителе луча... Аксиома 1: квант не делится. Человек, говорящий про половинки кванта вне его длины волны воспринимается мной с не меньшим скептицизмом, чем человек, создающий новую вселенную при каждом изменении состояния кванта. Аксиома 2: фотон не меняет траекторию, а если она изменилась, то это - переизлучение фотона электроном. Потому как квант - не упругая частица и нет ничего, от чего бы он отскочил. Почему-то во всех описаниях подобных опытов эти две вещи избегается упоминать, хотя они имеют более базовое значение, чем те эффекты, которые описываются. Не понимаю, почему так говорит Пенроуз , он же не может не знать про неделимость кванта, мало того, он упоминал это в двухщелевом описании. В подобных чудесных случаях нужно все же стараться оставаться в рамках базовых аксиом и если они вступают в какое-то противоречие с опытом, это повод более тщательно подумать о методике и интерпретации.
Давайте пока примем, хотя бы в качестве математической модели квантового мира, это курьезное описание, согласно которому квантовое состояние эволюционирует какое-то время в виде волновой функции, обычно «размазанной» по всему пространству (но с возможностью фокусировки в более ограниченной области), а затем, когда проводится измерение, это состояние превращается в нечто локализованное и вполне определенное.
Т.е. всерьез говорится о возможности размазанности чего-то на несколько световых лет с возможностью мнгновенного взаимного изменения. Такое можно представить чисто абстрактно - как сохранение формализ ованного описания на каждой из сторон, но никак не в виде какой-то реальной сущности, представленной природой кванта. Здесь - явная преемственность идеи о реальности существования математических формализ мов.

Вот почему я воспринимаю как Пенроуз а, так и других подобных промист ически мыслящих физиков очень скептически, несмотря на их очень громкий авторитет...

В книге С. Вайнберг Мечты об окончательной теор ии :
Философия квантовой механики настолько не имеет отношения к ее реальному использованию, что начинаешь подозревать, что все глубокие вопросы о смысл е измерения на самом деле пусты, порождены несовершенством нашего языка, который создавался в мире, практически управляющемся законами классической физики.

В статье Что такое локальность и почему ее нет в квантовом мире? , где проблему обобщает на основе последних событий Александр Львовский, сотрудник РКЦ и профессор Университета Калгари:
Квантовая нелокальность существует только в рамках копенгагенской интерпретации квантовой механики. В соответствии с ней, при измерении квантового состояния происходит его коллапс. Если же брать за основу многомировую интерпретацию, которая говорит, что измерение состояния лишь распространяет суперпозицию на наблюдателя, то никакой нелокальности нет. Это лишь иллюзия наблюдателя, «не знающего», что он перешёл в запутанное состояние с частицей на противоположном конце квантовой линии.

Некоторые выводы из статьи и ее уже имеющегося обсуждения.
В настоящее время существует очень много интерпретаций разного уровня проработанности, пытающихся не просто описать явление запутанности и другие "нелокальные эффекты", но описать предположения о природе (механизмах) этих явлений, - т.е. гипотез ы. Причем преобладает мнение, что невозможно в этой предметной области что-то вообразить, а возможно только полагаться на те или иные формализ ации.
Однако, эти самые формализ ации примерно с одинаковой убедительностью могут показать все, что угодно интерпретатору, вплоть до описания возникновения новой вселенной всякий раз, в момент квантовой неопределенности. А так как такие моменты возникают при наблюдении, то привнести сознание - как непосредственный участник квантовых явлений.
Подробное обоснование - почему такой подход представляется совершенно неверным - смотрите в статье Эвристика .
Так что всякий раз, когда очередной крутой математик начнет доказывать нечто вроде единства природы двух совершенно разных явлений на основе сходства их математического описания (ну, к примеру, всерьез проделывается такое с законом Кулона и законом тяготения Ньютона) или "объяснять" квантовую запутанность особым "измерением" без представления его реального воплощения (или существованием меридианов в формализ ме землян), я буду держать наготове:)

Квантовая запутанность, или «жуткое действие на расстоянии», как ее называл Альберт Эйнштейн - это квантовомеханический феномен, при котором квантовые состояния двух или большего числа объектов оказываются взаимозависимыми. Эта зависимость сохраняется даже если объекты удалить друг от друга за много километров. Например, можно запутать пару фотонов, увести один из них в другую галактику, а потом измерить спин второго фотона - и он будет противоположен спину первого фотона, и наоборот. Квантовую запутанность пытаются приспособить для мгновенной передачи данных на гигантские расстояния или даже для телепортации.

Физики из шотландского университета Глазго сообщили об эксперименте, в результате которого ученые смогли получить первую в истории фотографию частиц. Явления по меркам физики настолько странного, что даже великий ученый 20-го века прозвал его «жутким действием на расстоянии». Достижение шотландских ученых очень важно для разработки новых технологий. Почему? Давайте разбираться.

Мы уже неоднократно писали о том, что в разных концах света то и дело проходят испытания устройств квантовой связи. Казалось бы, дальше экспериментов все это зайдет не скоро, но вот, как сообщает агентство новостей Синьхуа, в Китае завершили создание первой в стране коммерческой сверхзащищенной квантовой коммуникационной сети. Ввод в эксплуатацию планируется в самое ближайшее время.



Поделиться