Работа от момента приложенного к телу. Элементарная работа силы

Работа внутренних сил на конечном перемещении равна нулю.

Работа силы, действующей на поступательно движущееся тело равна произведению этой силы на приращение линейного перемещения.

Работа силы, действующей на вращающееся тело равна произведению момента этой силы относительно оси вращения на приращение угла поворота: ; . Мощность:
.

Кинетическая энергия механической системы при различных видах движения.

Кинетическая энергия механической системы - скаляр, равный сумме кинетических энергий всех точек системы: .

При поступательном движении:

При вращательном движении:

При плоскопараллельном движении: , где d - расстояние от центра масс до МЦС

27. Теорема об изменении кинетической энергии материальнойточки.

Кинетическая энергия материальной точки - скаляр, равный половине произведение массы точки на квадрат ее скорости.

Основное уравнение динамики: , помножим на элементарное перемещение: ; ; . Интегрируя полученное выражение:

Теорема : изменение кинетической энергии материальной точки на некотором перемещении равно работе силы, действующей на точку, на том же перемещении.

Теорема об изменении кинетической энергии механической системы.

Так как работа внутренних сил равна нулю, то:
.

Теорема : изменение кинетической энергии механической системы на конечном перемещении равно сумме работ внешних сил на том же перемещении.

Принцип возможных перемещений для механической системы.

; , пусть связи, наложенные на точки механической системы двусторонние, стационарные, голономные и идеальные, тогда: .

Принцип возможных перемещений - принцип Лагранжа - для равновесия механической системы с двусторонними, стационарными, голономными и идеальными связями необходимо и достаточно, чтоб алгебраическая сумма работ задаваемых сил на возможном перемещении равнялась нулю.

Принцип Даламбера для материальной точки.

Геометрическая сумма всех приложенных к движущейся материальной точке сил и сил инерции этой точки равна нулю

Принцип Даламбера для несвободной механической системы.

В движущейся несвободной механической системе для каждой материальной точки в любой момент времени геометрическая сумма приложенных к ней задаваемых сил, реакций связи и сил инерции равна нулю. Умножив обе части выражения на r i получим: ;
.

, сумма моментов задаваемых сил, реакций связи и сил инерции относительно осей координат равна нулю.

Приведение сил инерции точек твердого тела к простейшему виду.

К системе сил инерции точек твердого тела, можно применить метод Пуансона, рассмотренный в статике. Тогда любую систему сил инерции можно привести к главному вектору сил инерции и главному моменту сил инерции.

При поступательном движении: Ф=-ma (при поступательном движении твердого тела, силы инерции его точек приводятся к главному вектору сил инерции равному по модулю произведению массы тела, на ускорение центра масс приложенному в этом центре и направленному в сторону противоположному ускорению центра масс).

При вращательном движении: М=-Iε (при вращательном движении твердого тела силы инерции его точек приводятся к главному моменту сил инерции равному произведению момента инерции тела относительно сил вращения на угловое ускорение. Направлен этот момент в сторону противоположному угловому ускорению).

При плоском движении: Ф=-ma М=-Iε (при плоском движении твердого тела силы инерции его точек приводятся к главному вектору и главному моменту сил инерции).

Общее уравнение динамики. Принцип Даламбера-Лагранжа.

Принцип Даламбера: å(P i + R i + Ф i) = 0; å(P i + R i + Ф i)Dr i = 0, полагаем. что связи, наложенные на механическую систему двусторонние, стационарные, голономные и идеальные, тогда: å(R i × Dr i) = 0;

å(P i + Ф i)Dr i = 0 - общее уравнение динамики - для движения механической системы с двусторонними, стационарными, голономными и идеальными связями сумма работ задаваемых сил и сил инерции точек системы на любом возможном перемещении равна нулю.

Просмотр: эта статья прочитана 49920 раз

Pdf Выберите язык... Русский Украинский Английский

Краткий обзор

Полностью материал скачивается выше, предварительно выбрав язык


Два случая преобразования механического движения материальной точки или системы точек:

  1. механическое движение переносится с одной механической системы на другую в качестве механического движения;
  2. механическое движение превращается в другую форму движения материи (в форму потенциальной энергии, теплоту, электричество и т.д.).

Когда рассматривается преобразование механического движения без перехода его в другую форму движения, мерой механического движения является вектор количества движения материальной точки или механической системы. Мерой действия силы в этом случае является вектор импульса силы.

Когда механическое движение превращается в другую форму движения материи, в качестве меры механического движения выступает кинетическая энергия материальной точки или механической системы. Мерой действия силы при превращении механического движения в другую форму движения является работа силы

Кинетическая энергия

Кинетическая энергия это способность тела преодолевать препятствование во время движения.

Кинетическая энергия материальной точки

Кинетической энергией материальной точки называется скалярная величина, которая равняется половине произведения массы точки на квадрат ее скорости.

Кинетическая энергия:

  • характеризует и поступательное, и вращательное движения;
  • не зависит от направления движения точек системы и не характеризует изменение этих направлений;
  • характеризует действие и внутренних, и внешних сил.

Кинетическая энергия механической системы

Кинетическая энергия системы равняется сумме кинетических энергий тел системы. Кинетическая энергия зависит от вида движения тел системы.

Определение кинетической энергии твердого тела при разных видах движения движениях.

Кинетическая энергия поступательного движения
При поступательном движении кинетическая энергия тела равна Т =m V 2 /2.

Мерой инертности тела при поступательном движении является масса.

Кинетическая энергия вращательного движения тела

При вращательном движении тела кинетическая энергия равняется половине произведения момента инерции тела относительно оси вращения и квадрата его угловой скорости.

Мерой инертности тела при вращательном движении является момент инерции.

Кинетическая энергия тела не зависит от направления вращения тела.

Кинетическая энергия плоскопаралельного движения тела

При плоскопаралельном движении тела кинетическая энергия равна

Работа силы

Работа силы характеризует действие силы на тело при некотором перемещении и определяет изменение модуля скорости подвижной точки.

Элементарная работа силы

Элементарная работа силы определяется как скалярная величина, равная произведению проекции силы на касательную к траектории, направленную в направлении движения точки, и бесконечно малого перемещения точки, направленного вдоль этой касательной.

Работа силы на конечном перемещении

Работа силы на конечном перемещении равна сумме ее работ на элементарных участках.

Работа силы на конечном перемещении М 1 М 0 равняется интегралу вдоль этого перемещения от элементарной работы.

Работа силы на перемещении М 1 М 2 изображается площадью фигуры, ограниченной осью абсцисс, кривой и ординатами, соответствующими точкам М 1 и М 0 .

Единица измерения работы силы и кинетической энергии в системе СИ 1 (Дж).

Теоремы о работе силы

Теорема 1 . Работа равнодействующей силы на некотором перемещении равна алгебраической сумме работ составляющих сил на том же перемещении.

Теорема 2. Работа постоянной силы на результирующем перемещении равна алгебраической сумме работ этой силы на составляющих перемещениях.

Мощность

Мощность - это величина, которая определяет работу силы за единицу времени.

Единицей измерения мощности есть 1Вт = 1 Дж/с.

Случаи определения работы сил

Работа внутренних сил

Сумма работ внутренних сил твердого тела на любом его перемещении равна нулю.

Работа силы тяжести

Работа силы упругости

Работа силы трения

Работа сил, приложенных к вращающемуся телу

Элементарная работа сил, приложенных к твердому телу, вращающемуся вокруг неподвижной оси, равна произведению главного момента внешних сил относительно оси вращения на приращение угла поворота.

Сопротивление качению

В зоне контакта неподвижого цилиндра и плоскости возникает местная деформация контактного сжатия, напряжение распределяются по эллиптическому закону и линия действия равнодействующей N этих напряжений совпадает с линией действия силы нагрузки на цилиндр Q. При перекатывании цилиндра распределение нагрузки становится несимметричным с максимумом, смещенным в сторону движения. Равнодействующая N смещается на величину k - плечо силы трения качения, которая еще назвается коэффициентом трения качения и имеет размерность длины (см)

Теорема об изменении кинетической энергии материальной точки

Изменение кинетической энергии материальной точки на некотором ее перемещении равняется алгебраической сумме робот всех действующих на точку сил на том же перемещении.

Теорема об изменении кинетической энергии механической системы

Изменение кинетической энергии механической системы на некотором перемещении равняется алгебраической сумме робот внутренних и внешних сил, действующих на материальные точки системы на том же перемещении.

Теорема об изменении кинетической энергии твердого тела

Изменение кинетической энергии твердого тела (неизменной системы) на некотором перемещении равняется сумме робот внешних сил, действующих на точки системы на том же перемещении.

КПД

Силы, действующие в механизмах

Силы и пары сил (моменты), которые приложены к механизму или машине, можно разделить на группы:

1.Движущие силы и моменты, совершающие положительную работу (приложенные к ведущим звеньям, например, давление газа на поршень в ДВС).

2. Силы и моменты сопротивления, совершающие отрицательную работу:

  • полезного сопротивления (совершают требуемую от машины работу и приложены к ведомым звеньям, например сопротивление поднимаемого машиной груза),
  • силы сопротивления (например, силы трения, сопротивление воздуха и т.п.).

3. Силы тяжести и силы упругости пружин (как положительная, так и отрицательная работа, при этом работа за полный цикл равна нулю).

4. Силы и моменты, приложенные к корпусу или стойке извне (реакция фундамента и т.п.), которые не совершают работу.

5. Силы взаимодействия между звеньями, действующие в кинематических парах.

6. Силы инерции звеньев, обусловленные массой и движением звеньев с ускорением, могут осуществлять положительную, отрицательную работу и не совершать работы.

Работа сил в механизмах

При установившемся режиме работы машины ее кинетическая энергия не изменяется и сумма работ приложенных к ней движущих сил и сил сопротивления равна нулю.

Работа, затрачиваемая на приведение машины в движение, расходуется на преодоление полезных и вредных сопротивлений.

КПД механизмов

Механический коэффициент полезного действия при установившемся движении равен отношению полезной работы машины к работе, затраченной на приведение машины в движение:

Элементы машины могут соединяться последовательно, параллельно и смешанно.

КПД при последовательном соединении

При последовательном соединении механизмов общий КПД меньше с наименьшего КПД отдельного механизма.

КПД при параллельном соединении

При параллельном соединении механизмов общий КПД больше наименьшего и меньше наибольшего КПД отдельного механизма.

Формат: pdf

Язык: русский, украинский

Пример расчета прямозубой цилиндрической передачи
Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


Пример решения задачи на изгиб балки
В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


Пример решения задачи на кручение вала
Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


Пример решения задачи на растяжение-сжатие стержня
Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


Применение теоремы о сохранении кинетической энергии
Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы

Теорема: работа силы тяжести не зависит от вида траектории и равна произведению модуля силы на вертикальное перемещение точки ее приложения .

Пусть материальная точка М движется под действием силы тяжести G и за какой-то промежуток времени перемещается из положения М 1 в положение М 2 , пройдя путь s (рис. 4) .
На траектории точки М выделим бесконечно малый участокds , который можно считать прямолинейным, и из его концов проведем прямые, параллельные осям координат, одна из которых вертикальна, а другая горизонтальна.
Из заштрихованного треугольника получим, что

dy = ds cos α .

Элементарная работа силы G на пути ds равна:

dW = F ds cos α .

Полная работа силы тяжести G на пути s равна

W = ∫ Gds cos α = ∫ Gdy = G ∫ dy = Gh .

Итак, работа силы тяжести равна произведению силы на вертикальное перемещение точки ее приложения:

Теорема доказана.

Пример решения задачи по определению работы силы тяжести

Задача: Однородный прямоугольный массив АВСD массой m = 4080 кг имеет размеры, указанные на рис. 5 .
Определить работу, которую необходимо выполнить для опрокидывания массива вокруг ребра D .

Решение.
Очевидно, что искомая работа будет равна работе сопротивления, совершаемой силой тяжести массива, при этом вертикальное перемещение центра тяжести массива при опрокидывании через ребро D является путем, который определяет величину работы силы тяжести.

Для начала определим силу тяжести массива: G = mg = 4080×9,81 = 40 000 Н = 40 кН .

Для определения вертикального перемещения h центра тяжести прямоугольного однородного массива (он находится в точке пересечения диагоналей прямоугольника), используем теорему Пифагора, исходя из которой:

КО 1 = ОD – КD = √(ОК 2 + КD 2) – КD = √(3 2 +4 2) - 4 = 1 м .



На основании теоремы о работе силы тяжести определим искомую работу, необходимую для опрокидывания массива:

W = G×КО 1 = 40 000×1 = 40 000 Дж = 40 кДж.

Задача решена.

Работа постоянной силы, приложенной к вращающемуся телу

Представим себе диск, вращающийся вокруг неподвижной оси под действием постоянной силы F (рис. 6) , точка приложения которой перемещается вместе с диском. Разложим силу F на три взаимно-перпендикулярные составляющие: F 1 – окружная сила, F 2 осевая сила, F 3 – радиальная сила.

При повороте диска на бесконечно малый угол силаF совершит элементарную работу, которая на основании теоремы о работе равнодействующей будет равна сумме работ составляющих.

Очевидно, что работа составляющих F 2 и F 3 будет равна нулю, так как векторы этих сил перпендикулярны бесконечно малому перемещению ds точки приложения М , поэтому элементарная работа силы F равна работе ее составляющей F 1 :

dW = F 1 ds = F 1 Rdφ .

При повороте диска на конечный угол φ работа силы F равна

W = ∫ F 1 Rdφ = F 1 R ∫ dφ = F 1 Rφ ,

где угол φ выражается в радианах.

Так как моменты составляющих F 2 и F 3 относительно оси z равны нулю, то на основании теоремы Вариньона момент силы F относительно оси z равен:

М z (F) = F 1 R .

Момент силы, приложенной к диску, относительно оси вращения называется вращающим моментом, и, согласно стандарту ИСО , обозначается буквой Т :

Т = М z (F) , следовательно, W = Tφ .

Работа постоянной силы, приложенной к вращающемуся телу, равна произведению вращающего момента на угловое перемещение .

Пример решения задачи

Задача: рабочий вращает рукоятку лебедки силой F = 200 Н , перпендикулярной радиусу вращения.
Найти работу, затраченную в течение времени t = 25 секунд , если длина рукоятки r = 0,4 м , а ее угловая скорость ω = π/3 рад/с .

Решение.
Прежде всего определим угловое перемещение φ рукоятки лебедки за 25 секунд :

φ = ωt = (π/3)×25 = 26,18 рад.

W = Tφ = Frφ = 200×0,4×26,18 ≈ 2100 Дж ≈ 2,1 кДж .

Мощность

Работа, совершаемая какой-либо силой, может быть за различные промежутки времени, т. е. с разной скоростью. Чтобы охарактеризовать, насколько быстро совершается работа, в механике существует понятиемощности , которую обычно обозначают буквой P .

Элементарной работой силы на перемещении (рис. 3.22) называется скалярное произведение силы на элементарное перемещение точки ее приложения:

где a – угол между направлениями векторов и

Так как то можно записать еще одно выражение элементарной работы:

Для элементарной работы можно записать еще несколько выражений:

Из формул элементарной работы следует, что эта величина может быть положительной (угол a острый), отрицательной (угол a тупой) или равна нулю (угол a прямой).

Полная работа сил . Для определения полной работы силы на перемещении от точки M 0 до М разобьем это перемещение на n перемещений, каждое из которых в пределе переходит в элементарное. Тогда работа силы А :

где dA k – работа на k -м элементарном перемещении.

Записанная сумма является интегральной и может быть заменена криволинейным интегралом, взятым вдоль кривой на перемещении M 0 М. Тогда

или

где момент времени t =0 соответствует точке M 0 , а момент времени t – точке М .

Из определения элементарной и полной работы следует:

1) работа равнодействующей силы на каком–либо перемещении равна алгебраической сумме работ составляющих сил на этом перемещении;

2) работа сил на полном перемещении равна сумме работ этой же силы на составляющих перемещениях, на которые любым образом разбито все перемещение.

Мощность силы. Мощностью силы называют работу за единицу времени:

или с учетом, что

Мощность силы – это величина, равная скалярному произведению силы на скорость точки ее приложения.

Таким образом, при постоянной мощности увеличение скорости ведет к уменьшению силы и наоборот. Единицей измерения мощности является Ватт : 1Вт=1 Дж/с.

Если сила приложена к телу, вращающемуся вокруг неподвижной оси, то ее мощность равна

Аналогично определяется и мощность пары сил.

3.3.4.3. Примеры вычисления работы силы

Полная работа силы –

где h – высота, на которую опустилась точка.

Таким образом, работа силы тяжести положительная, когда точка опускается, и отрицательная, когда точка поднимается. Работа силы тяжести не зависит от формы траектории между точками M 0 и M 1 .

Работа линейной силы упругости. Линейной силой упругости называют силу, действующую по закону Гука (рис. 3.24):

где – радиус-вектор, проведенный из точки равновесия, где сила равна нулю, до рассматриваемой точки М ; с постоянный коэффициент жесткости.

Работа силы на перемещении от точки M 0 до точки M 1 определим по формуле

Выполняя интегрирование, получаем

(3.27)

Рис. 3.25

По формуле (3.27) вычисляют работу линейной силы упругости пружин при перемещении по любому пути из точки M 0 , в которой ее начальная деформация равна в точку M 1 , где деформация соответственно равна В новых обозначениях формула (3.27) принимает вид

Работа силы, приложенной к вращающемуся твердому телу . При вращении твердого тела вокруг неподвижной оси скорость точки М можно вычислить по формуле Эйлера, см. рис. 3.25:

Тогда элементарную работу силы определим по формуле

Используя свойство смешанного векторного произведения
получим

Так как – момент силы относительно точки О . Учитывая, что – момент силы относительно оси вращения Oz и ωdt =d φ, окончательно получаем:

dA =M z d φ.

Элементарная работа силы, приложенной к какой–либо точке тела, вращающегося вокруг неподвижной оси, равна произведению момента силы относительно оси вращения на дифференциал угла поворота тела.

Полная работа:

В частном случае, когда , работу определяют по формуле

где j – угол поворота тела, на котором вычисляют работу силы.

Рис. 3.26

Работа внутренних сил твердого тела . Докажем, что работа внутренних сил твердого тела равна нулю при любом его перемещении. Достаточно доказать, что сумма элементарных работ всех внутренних сил равна нулю. Рассмотрим две любые точки тела M 1 и M 2 (рис. 3.26). Так как внутренние силы есть силы взаимодействия точек тела, то:

Введем единичный вектор направленный по силе Тогда

Сумма элементарных работ сил и равна

Раскрывая скалярные произведения векторов в скобках, получаем

Так как в кинематике доказано, что проекции скоростей любых двух точек твердого тела на направление прямой линии, соединяющей эти точки, равны друг другу при любом движении твердого тела, то в полученном выражении в скобках стоит разность одинаковых величин, т.е. величина, равная нулю.

3.3.4.4. Теорема об изменении кинетической энергии точки

Для материальной точки массой m , движущейся под действием силы основной закон динамики можно представить в виде

Умножая обе части этого соотношения скалярно на дифференциал радиус-вектора точки имеем

или

Учитывая, что – элементарная работа силы,

(3.28)

Формула (3.28) выражает теорему об изменении кинетической энергии для точки в дифференциальной форме.

Дифференциал кинетической энергии точки равен элементарной работе силы, действующей на точку.

Если обе части равенства (3.28) проинтегрировать от точки M 0 до точки М (см. рис. 3.22), получаем теорему об изменении кинетической энергии точки в конечной форме:

Изменение кинетической энергии точки на каком–либо перемещении равно работе силы, действующей на точку на том же перемещении.

3.4.4.5. Теорема об изменении кинетической энергии системы

Для каждой точки системы можно выразить теорему об изменении кинетической энергии в форме:

Суммируя правые и левые части этих соотношений по всем точкам системы и вынося знак дифференциала за знак суммы, получаем:

или

где – кинетическая энергия системы; – элементарная работа внешних и внутренних сил соответственно.

Формула (3.29) выражает теорему об изменении кинетической энергии системы в дифференциальной форме.

Дифференциал от кинетической энергии системы равен сумме элементарных работ всех внешних и внутренних сил, действующих на систему.

Если обе части (3.29) проинтегрировать между двумя положениями системы – начальным и конечным, в которых кинетическая энергия равна T 0 и Т , то, изменяя порядок суммирования и интегрирования, имеем:

или

где – работа внешней силы для точки системы M k при ее перемещении из начального положения в конечное положение M k ; – работа внутренней силы, действующей на точку M k .

Формула (3.30) выражает теорему об изменении кинетической энергии системы в конечной или интегральной форме.

Изменение кинетической энергии системы при ее перемещении из одного положения в другое равно сумме работ всех внешних и внутренних сил, действующих на систему, на соответствующих перемещениях точек системы при том же перемещении системы.



Поделиться