Вследствие чего возникает сила упругости. Сила упругости

И сидеть дома. Но если не знаешь закон Гука – лучше тоже не выходить. Особенно, если идешь на экзамен по физике.

Здесь устраняем пробелы в знаниях и разбираемся, как решать задачи на силу упругости и применение закона Гука. А за полезной рассылкой для студентов добро пожаловать на наш телеграм-канал .

Сила упругости и закон Гука: определения

Сила упругости – сила, препятствующая деформациям и стремящаяся восстановить первоначальные форму и размеры тела.

Примеры действия силы упругости:

  • пружины сжимаются и разжимаются в матрасе;
  • мокрое белье колышется на натянутой веревке;
  • лучник натягивает тетиву, чтобы выпустить стрелу.
Простейшие деформации – деформации растяжения и сжатия.

Закон Гука:

Деформация, возникающая в упругом теле под действием внешней силы, пропорциональна величине этой силы.

Коэффициент k – жесткость материала.

Есть и другая формулировка закона Гука. Введем понятие относительной деформации «эпсилон» и напряжения материала «сигма»:

S – площадь поперечного сечения деформируемого тела. Тогда закон Гука запишется так: относительная деформация пропорциональна напряжению.

Здесь Е – модуль Юнга, зависящий от свойств материала.

Закон Гука был экспериментально открыт в 1660 году англичанином Робертом Гуком.

Вопросы на силу упругости и закон Гука

Вопрос 1. Какие бывают деформации?

Ответ. Помимо простейших деформаций растяжения и сжатия, бывают сложные деформации кручения и изгиба. Также разделяют обратимые и необратимые деформации.

Вопрос 2. В каких случаях закон Гука справедлив для упругих стержней?

Ответ. Для упругих стержней (в отличие от эластичных тел) закон Гука можно применять при малых деформациях, когда величина эпсилон не превышает 1%. При больших деформациях возникают явления текучести и необратимого разрушения материала.

Вопрос 3. Как направлена сила упругости?

Ответ. Сила упругости направлена в сторону, противоположную направлению перемещения частиц тела при деформации.

Вопрос 4. Какую природу имеет сила упругости?

Ответ. Сила упругости, как и сила трения – электромагнитная сила. Она возникает вследствие взаимодействия между частицами деформируемого тела.

Вопрос 5. От чего зависит коэффициент жесткости k? Модуль Юнга E?

Ответ. Коэффициент жесткости зависит от материала тела, а также его формы и размеров. Модуль Юнга зависит только от свойств материала тела.

Задачи на силу упругости и закон Гука с решениями

Кстати! Для наших читателей действует скидка 10% на любой вид работы .

Задача №1. Расчет силы упругости

Условие

Один конец проволоки жестко закреплен. С какой силой нужно тянуть за второй конец, чтобы растянуть проволоку на 5 мм? Жесткость проволоки известна и равна 2*10^6 Н/м2.

Решение

Запишем закон Гука:

По третьему закону Ньютона:

Ответ: 10 кН.

Задача №2. Нахождение жесткости пружины

Условие

Пружину, жесткость которой 100 Н/м, разрезали на две части. Чему равна жесткость каждой пружины?

Решение

По определению, жесткость обратно-пропорциональна длине. При одинаковой силе F неразрезанная пружина растянется на х, а разрезанная – на x1=x/2.

Ответ: 200 Н/м

При растяжении пружины в ее витках возникают сложные деформации кручения и изгиба, однако мы не учитываем их при решении задач.

Задача №3. Нахождение ускорения тела

Условие

Тело массой 2 кг тянут по гладкой горизонтальной поверхности с помощью пружины, которая при движении растянулась на 2 см. Жесткость пружины 200 Н/м. Определить ускорение, с которым движется тело.

Решение

За силу, которая приложена к телу и заставляет его двигаться, можно принять силу упругости. По второму закону Ньютона и по закону Гука:

Ответ: 2 м/с^2.

Задача №4. Нахождение жесткости пружины по графику

Условие

На графике изображена зависимость модуля силы упругости от удлинения пружины. Найти жесткость пружины.

Решение

Вспоминаем, что жесткость равна отношению силы и удлинения. Представленная зависимость – линейная. В любой точке прямой отношение ординаты F и абсциссы х дает результат 10 Н/м.

Ответ: k=10 Н/м.

Задача №5. Определение энергии деформации

Условие

Для сжатия пружины на х1=2 см надо приложить силу 10 Н. Определить энергию упругой деформации пружины при сжатии на х2=4 см из недеформированного состояния.

Решение

Энергия сжатой пружины равна:

Ответ: 0,4 Дж.

Нужна помощь в решении задач? Обращайтесь за ней в

Всё, что происходит в природе, основывается на действии различных сил – закон Гука является тому подтверждением. Это одно из основополагающих явлений науки.

Этот процесс является определяющим звеном процессов сжатия, изгибов, растяжения и других видоизменений материалов различных структур.

Разберёмся, в чем же заключается этот закон, как можно применить правило Гука на практике, и всегда ли оно выполняется.

Определение и формула закона Гука

Давно люди пытались объяснить происхождение явлений сжатия и растяжения. Отсутствие знаний являлось причиной накопления экспериментальных данных. Собственно, свою теорему английский испытатель Гук открыл из своих наблюдений и опытов. Только позже, после смерти ученого, современники назовут выведенную им аксиому – законом Гука.

Исследователь заметил, что при каждом упругом воздействии на объект появляется сила, которая возвращает его в исходную форму. Это и послужило началом экспериментов.

Аксиома Гука гласит:

При очень маленьких упругих воздействиях создается сила, пропорциональная изменению объекта, но противоположного знака по абсолютной величине перемещения его частиц.

Математически это определение можно записать следующим образом:

F x = F упр = — k * x ,

где в левой части указывается:

сила, действующая на тело;

x – перемещение тела (м);

k – коэффициент деформации, зависящий от свойств объекта.

Единица измерения, как и любой другой силы, является Ньютон.

Кстати, k еще называют жёсткостью тела, она измеряется в H/м. Жесткость обусловлена не внешними параметрами объекта, а зависит от его материала.

Правда, стоит учесть, что его закон справедлив только для упругих деформаций.

Сила упругости

Формулировка основывается на определении силы упругости. В чем же заключается ее отличие от других воздействий на тело?

На самом деле, сила упругости может возникать в любой точке тела при его упругой деформации. Что понимается под таким воздействием? Это изменение формы тела, при котором объект через определенный период времени возвращается в исходный вид.

А это в свою очередь происходит из-за молекулярного воздействия частиц: при любой деформации происходит изменение расстояния между молекулами объекта, а кулоновские силы притяжения или отталкивания стремятся вернуть тело в исходное положение.

Самая простая модель, демонстрирующая действие сил упругости, является пружинным маятником.

Какая формула выражает аксиому, установленную ученым в этом случае?

Тут аксиома Гука запишется в виде:

ε = α * S ,

где ε – относительное удлинение тела (его величина равна отношению удлинения к перемещению);

α – коэффициент пропорциональности (обратно пропорционален модулю Юнга Е);

S – механическое напряжение объекта (его величина равна отношению силы упругости к площади сечения тела).

Учитывая вышесказанное, уравнение можно записать так:

Δx / x = F упр / E * S ,

где Δx – максимальный сдвиг при деформации.

Стоит преобразовать данное выражение, тогда получим следующее:

F упр = (E * S / x ) Δx = k * Δx.

Поскольку сила упругости противоположна внешнему воздействию, то кратко закон читается таким образом:

F упр = — k * Δx.

В нем не зря упомянуты малые по величине деформации: при них Δx ̴ x, следовательно, F упр = — k * x.

При каких условиях выполняется закон Гука

А теперь посмотрим, каковы границы применимости этого выражения, и в каких условиях оно вообще выполняется.

Следует знать, что основным условием является:

s = E * e ,

где слева в уравнении находится напряжение, возникающее при деформации, а в правой части модуль Юнга и удлинение.

Причем, E зависит от характеристик частиц объекта, но не от его параметров формы, а второй множитель берется по модулю.

В целом аксиома Гука справедлива для многих ситуаций.

Так, при упругом изгибе пружины, лежащей на двух опорах, математическая запись теоремы выглядит следующим образом:

F упр = — m * g

F упр = — k * x

В иных ситуациях (при кручении, различных маятниках и других деформирующих процессах) аналогично записывается воздействие сил на объект.

Как применить закон упругой деформации на практике

Этот закон (обобщенный для многих ситуаций) является базовым в динамике и статике тел, поэтому его применимость осуществляется в областях, где необходимо проводить расчет жесткости и напряжения деформации объектов.

В первую очередь, правило Гука необходимо применять в строительстве и технике. Так, рабочие должны точно знать, какой максимальный груз может поднять башенный кран или какую нагрузку выдержит фундамент будущего здания.

Ни один из поездов не обходится без деформации растяжения и сжатия, поэтому закон Гука справедлив и для этих ситуаций. Кроме того, механизм и принцип действия любых динамометров, которыми снабжены некоторые части технического оборудования, также основываются на этом замечательном законе.

Закон Гука выполняется во всех объектах, являющихся аналогами модели «пружинный маятник».

В обычной жизни, дома, можно видеть применимость этого закона в пружинах некоторых механизмов.

Таким образом, закон Гука применим во многих сферах жизни человека. Он является одним из базовых явлений, на которых держится существование всей жизни на планете.

Заключение

Подводя итоги, следует отметить, что закон Гука – универсальный помощник в задачах с решениями по деформации объектов не только в студенческих книжках по сопромату, но и в различных инженерных областях.

Именно эти простые задания помогают ученым и мастерам создавать новые технические модели, необходимые в условиях современного технического прогресса.

Сила упругости - одна из сил взаимодействия тел, и ее изучением занимается механика. Как она возникает, от чего зависит, куда направлена? Прочитав статью, вы узнаете ответы на эти вопросы.

Как и когда возникает сила упругости?

Проведем эксперимент:

  • укрепим пружинку с помощью пластилина на нижней стороне горизонтальной поверхности, например, стола;
  • подвесим к свободному концу пружинки небольшой груз.

Рис. 1. Сила упругости

Из-за действия силы тяжести груз должен был упасть. Почему же этого не произошло? Причина - сила упругости, которая подействовала на груз со стороны пружинки. В общем случае ее возникновение обусловлено деформацией: растяжением, сжатием, сдвигом, кручением или изгибом. В нашем эксперименте она возникла из-за растяжения пружинки.

Направление силы упругости

Каждое тело содержит молекулы и атомы, которые состоят из заряженных частиц. Они притягиваются и отталкиваются друг от друга с определенной силой. Какое из этих взаимодействий будет преобладать, зависит от расстояния между ними.

Рис. 2. Заряженные частицы

Увеличение расстояния ведет к увеличению действия сил притяжения, уменьшение - к преобладанию сил отталкивания. В состоянии же покоя тела обе силы находятся в равновесии.

Из вышесказанного можно однозначно сказать, почему и куда направлена сила упругости. Ее направление противоположно движению атомов и молекул тела, так как она стремится восстановить первоначальную форму тела.

Взаимодействия между заряженными частицами обуславливают электромагнитную природу силы упругости.

Всегда ли деформация приводит к появлению силы упругости?

Вспомните, как легко пружинка восстанавливает свою форму, а вот пластилин всегда ее сохраняет. Происходит это из-за существования двух предельных случаев деформаций. Пример с пружинкой демонстрирует проявление упругой, а с пластилином - пластической деформации.

Когда мы говорим о силе упругости, то имеем в виду только упругую деформацию. Причем, значение ее невелико, и длится она недолго. Для пластической деформации характерны другие силы. Они зависят от скорости возникновения деформаций. Их не изучают в курсе физики 10 класса.

Связь между силой упругости и деформацией

Какова связь между силой упругости и деформацией? Как найти ее? Ответы на эти вопросы нашел английский изобретатель и естествоиспытатель Роберт Гук. Результаты его экспериментов показали линейный характер связи. В письменном виде установленный им закон выглядит следующим образом:

Fупр=k|Δl| или Fупр=k|x| ,

где k - коэффициент упругости, Δl , или x - абсолютное удлинение.

Δl , или x – разница между длиной деформированного тела и начальной длиной в метрах (м).

k -жесткость. Она выражается в ньютонах на метр (Н/м), ее значение обуславливают размеры тела и свойства материала. Единица измерения Fупр – ньютон (Н).

Обратите внимание, что закон Гука применяется только в случае малых упругих деформаций.

Сила упругости всегда является результатом деформации тела. Данная сила всегда пытается вернуть деформированное тело в исходное положение. Что же такое сила упругости, и при каких условиях она возникает?

Общая характеристика силы упругости

Сила упругости возникает при деформации тел, например, при растяжении или сжатии пружины. Деформация – это изменение формы и размеров тела.

Рис. 1. Сила упругости при деформации пружины.

Если исчезнет деформация тела, то сила упругости тоже исчезнет

Причиной возникновения сил упругости являются силы притяжения и отталкивания между частицами (молекулами или атомами), из которых состоят все тела. Если слегка увеличить расстояние между частицами, то силы взаимодействия оказываются силами притяжения между ними. Если же расстояние между частицами немного уменьшить, они становятся силами отталкивания. Сила упругости, действующая на тело, связана с деформацией тела следующим образом:

где F упр. – модуль силы упругости, х – удлинение тела (расстояние, на которое изменяется первоначальная длина тела), k – коэффициент пропорциональности, называемый жесткостью пружины, измеряемый в Н/м. Данная формула силы упругости служит выражением закона Гука. Определение закона Гука выражается следующим образом: сила упругости, возникающая при деформации тела, пропорциональна удлинению тела и направлена противоположно перемещению частиц тела относительно других частиц при деформации.

Рис. 2. Формула закон Гука.

Прямую пропорциональную зависимость между силой упругости и удлинением используют в динамометрах – приборах для измерения силы. Силы упругости работают в технике и природе: в часовых механизмах, в амортизаторах на транспорте, в канатах и тросах, в человеческих костях и мышцах.

Свойства силы упругости

К силам упругости относятся сила реакции опоры и веса тела. Сила реакции (N) со стороны опоры на тело возникает, когда тело кладут на какую-нибудь поверхность (опору).

Если тело подвешивают на нити, то эта же самая сила называется силой натяжения нити (Т).

Силы упругости имеет ряд особенностей:

  • возникают при деформации
  • возникают одновременно у двух тел
  • перпендикулярны поверхности
  • противоположны по направлению смещению.

Вес тела (P) – это сила, с которой тело действует на горизонтальную опору или вертикальный подвес, вследствие своего притяжения к Земле.

Вес тела обозначается буквой P и измеряется в Ньютонах.

Если опора тела горизонтальна и неподвижна, то вес такого тела численно равен силе тяжести, действующей на это тело и равен P=mg

Если же тело движется вверх с ускорением а, то вес этого тела больше веса покоящегося тела и равен $P=(g+a)m$

А если же тело с ускорением а движется вниз, то его вес $P =(g-a)m$

При равенстве ускорения тела и ускорения свободного падения вес тела равен нулю. Это состояние невесомости.

Рис. 3. Таблица сравнение силы упругости с другими силами.

Что мы узнали?

Тема «Сила упругости» является важным этапом в познании физики как науки. Силы упругости - это силы, возникающие в теле при его упругой деформации и направленные в сторону, противоположную смещению частиц при деформации. Сила упругости не существует без деформации тела. Также к силам упругости относятся сила реакции опоры и веса тела.

Тест по теме

Оценка доклада

Средняя оценка: 4.4 . Всего получено оценок: 92.

Природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. В простейшем случае растяжения/сжатия тела сила упругости направлена противоположно смещению частиц тела, перпендикулярно поверхности.

Вектор силы противоположен направлению деформации тела (смещению его молекул).

Закон Гука

В простейшем случае одномерных малых упругих деформаций формула для силы упругости имеет вид:

,

где - жёсткость тела, - величина деформации.

В словесной формулировке закон Гука звучит следующим образом:

Сила упругости, возникающая при деформации тела, прямо пропорциональна удлинению тела и направлена противоположно направлению перемещения частиц тела относительно других частиц при деформации.

Нелинейные деформации

При увеличении величины деформации закон Гука перестаёт действовать, сила упругости начинает сложным образом зависеть от величины растяжения или сжатия.


Wikimedia Foundation . 2010 .

Смотреть что такое "Сила упругости" в других словарях:

    сила упругости - энергия упругости — Тематики нефтегазовая промышленность Синонимы энергия упругости EN elastic energy … Справочник технического переводчика

    сила упругости - tamprumo jėga statusas T sritis Standartizacija ir metrologija apibrėžtis Vidinės kūno jėgos, veikiančios prieš jį deformuojančias išorines jėgas ir iš dalies ar visiškai atkuriančios deformuotojo kūno (skysčių, dujų) tūrį ir (kietojo kūno) formą … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    сила упругости - tamprumo jėga statusas T sritis fizika atitikmenys: angl. elastic force vok. elastische Kraft, f rus. сила упругости, f; упругая сила, f pranc. force élastique, f … Fizikos terminų žodynas

    СИЛА - векторная величина мера механического воздействия на тело со стороны др. тел, а также интенсивности др. физ. процессов и полей. Силы бывают различными: (1) С. Ампёра сила, с которой (см.) действует на проводник с током; направление вектора силы… … Большая политехническая энциклопедия

    Запрос «сила» перенаправляется сюда; см. также другие значения. Сила Размерность LMT−2 Единицы измерения СИ … Википедия

    Запрос «сила» перенаправляется сюда; см. также другие значения. Сила Размерность LMT−2 Единицы измерения СИ ньютон … Википедия

    Сущ., ж., употр. наиб. часто Морфология: (нет) чего? силы, чему? силе, (вижу) что? силу, чем? силой, о чём? о силе; мн. что? силы, (нет) чего? сил, чему? силам, (вижу) что? силы, чем? силами, о чём? о силах 1. Силой называют способность живых… … Толковый словарь Дмитриева

    Раздел механики, в к ром изучаются перемещения, деформации и напряжения, возникающие в покоящихся или движущихся упругих телах под действием нагрузки. У. т. основа расчётов на прочность, деформируемость и устойчивость в строит, деле, авиа и… … Физическая энциклопедия

    Раздел механики, в к ром изучаются перемещения, деформации и напряжения, возникающие в покоящихся или движущихся упругих телах под действием нагрузки. У. т. теоретич. основа расчётов на прочность, деформируемость и устойчивость в строит. деле,… … Физическая энциклопедия

    Раздел механики (См. Механика), в котором изучаются перемещения, деформации и напряжения, возникающие в покоящихся или движущихся упругих телах под действием нагрузки. У. т. теоретическая основа расчётов на прочность, деформируемость и… … Большая советская энциклопедия

Книги

  • Комплект таблиц. Физика. 7 класс (20 таблиц) , . Учебный альбом из 20 листов. Физические величины. Измерения физических величин. Строение вещества. Молекулы. Диффузия. Взаимное притяжение и отталкивание молекул. Три состояния вещества.…
  • Комплект таблиц. Физика. Динамика и кинематика материальной точки (12 таблиц) , . Учебный альбом из 12 листов. Законы Ньютона. Закон всемирного тяготения. Сила тяжести. Сила упругости. Вес тела. Сила трения. Закон движения. Перемещение. Скорость. Равномерное прямолинейное…


Поделиться