Теорема об изменении количества движения материальной системы. Динамика системы тел

Количеством движения системы называют геометрическую сумму количеств движения всех материальных точек системы

Для выяснения физического смысла (70) вычислим производную от (64)

. (71)

Решая совместно (70) и (71), получим

. (72)

Таким образом, вектор количества движения механической системы определяется произведением массы системы на скорость ее центра масс .

Вычислим производную от (72)

. (73)

Решая совместно (73) и (67), получим

. (74)

Уравнение (74) выражает следующую теорему.

Теорема: Производная по времени от вектора количества движения системы равна геометрической сумме всех внешних сил системы.

При решении задач уравнение (74) необходимо спроектировать на координатные оси:

. (75)

Из анализа (74) и (75) вытекает следующий закон сохранения количества движения системы : Если сумма всех сил системы равна нулю, то вектор количества движения ее сохраняет свою величину и направление.

Если
, то
,Q = const . (76)

В частном случае этот закон может выполнять вдоль одной из координатных осей.

Если
, то,Q z = const . (77)

Теорему об изменении количества движения целесообразно использовать в тех случаях, когда в систему входят жидкие и газообразные тела.

Теорема об изменении кинетического момента механической системы

Количество движения характеризует только поступательную составляющую движения. Для характеристики вращательного движения тела введено понятие главного момента количеств движения системы относительно заданного центра (кинетического момента).

Кинетическим моментом системы относительно данного центра называется геометрическая сумма моментов количеств движения всех его точек относительно того же центра

. (78)

Проектируя (22) на оси координат можно получить выражение кинетического момента относительно координатных осей

. (79)

Кинетический момент тела относительно осей равен произведению момента инерции тела относительно этой оси на угловую скорость тела

. (80)

Из (80) следует, что кинетический момент характеризует только вращательную составляющую движения.

Характеристикой вращательного действия силы является ее момент относительно оси вращения.

Теорема об изменении кинетического момента устанавливает взаимосвязь между характеристикой вращательного движения и силой, вызывающей это движение.

Теорема: Производная по времени от вектора кинетического момента системы относительно некоторого центра равна геометрической сумме моментов всех внешних сил системы относительно того же центра

. (81)

При решении инженерных задач (81) необходимо спроектировать на координатные оси

Их анализа (81) и (82) вытекает закон сохранения кинетического момента : Если сумма моментов всех внешних сил относительно центра (или оси) равна нулю, то кинетический момент системы относительно этого центра (или оси) сохраняет свою величину и направление.

,

или

Кинетический момент нельзя изменить действием внутренних сил системы, но за счет этих сил можно изменить момент инерции, а следовательно угловую скорость.

Пусть материальная точка движется под действием силы F . Требуется определить движение этой точки по отношению к подвижной системе Oxyz (см. сложное движение материальной точки), которая движется известным образом по отношению к неподвижной системе O 1 x 1 y 1 z 1 .

Основное уравнение динамики в неподвижной системе

Запишем абсолютное ускорение точки по теореме Кориолиса

где a абс – абсолютное ускорение;

a отн – относительное ускорение;

a пер – переносное ускорение;

a кор – кориолисово ускорение.

Перепишем (25) с учетом (26)

Введем обозначения
- переносная сила инерции,
- кориолисова сила инерции. Тогда уравнение (27) приобретает вид

Основное уравнение динамики для изучения относительного движения (28) записывается как же как и для абсолютного движения, только к действующим на точку силам надо добавить переносную и кориолисову силы инерции.

Общие теоремы динамики материальной точки

При решении многих задач можно пользоваться выполненными заранее заготовками, полученными на основе второго закона Ньютона. Такие методы решения задач объединены в этом разделе.

Теорема об изменении количества движения материальной точки

Введем следующие динамические характеристики:

1. Количество движения материальной точки – векторная величина, равная произведению массы точки на вектор ее скорости


. (29)

2. Импульс силы

Элементарный импульс силы – векторная величина, равная произведению вектора силы на элементарный промежуток времени


(30).

Тогда полный импульс

. (31)

При F =const получим S =Ft .

Полный импульс за конечный промежуток времени можно вычислить только в двух случаях, когда действующая на точку сила постоянная или зависит то времени. В других случаях необходимо выразить силу как функцию времени.

Равенство размерностей импульса (29) и количества движения (30) позволяет установить между ними количественную взаимосвязь.

Рассмотрим движение материальной точки M под действием произвольной силы F по произвольной траектории.

ОУД:
. (32)

Разделяем в (32) переменные и интегрируем

. (33)

В итоге, принимая во внимание (31), получаем

. (34)

Уравнение (34) выражает следующую теорему.

Теорема : Изменение количества движения материальной точки за некоторый промежуток времени равно импульсу силы, действующей на точку, за тот же интервал времени.

При решении задач уравнение (34) необходимо спроектировать на оси координат

Данной теоремой удобно пользоваться, когда среди заданных и неизвестных величин присутствуют масса точки, ее начальная и конечная скорость, силы и время движения.

Теорема об изменении момента количества движения материальной точки

М
омент количества движения материальной точки
относительно центра равен произведению модуля количества движения точки на плечо, т.е. кратчайшее расстояние (перпендикуляр) от центра до линии, совпадающей с вектором скорости

, (36)

. (37)

Взаимосвязь между моментом силы (причиной) и моментом количества движения (следствием) устанавливает следующая теорема.

Пусть точка M заданной массы m движется под действием силы F .

,
,

, (38)

. (39)

Вычислим производную от (39)

. (40)

Объединяя (40) и (38), окончательно получим

. (41)

Уравнение (41) выражает следующую теорему.

Теорема : Производная по времени от вектора момента количества движения материальной точки относительно некоторого центра равна моменту действующей на точку силы относительно того же центра.

При решении задач уравнение (41) необходимо спроектировать на оси координат

В уравнениях (42) моменты количеств движения и силы вычисляются относительно координатных осей.

Из (41) вытекает закон сохранения момента количества движения (закон Кеплера).

Если момент силы, действующей на материальную точку, относительно какого-либо центра равен нулю, то момент количества движения точки относительно этого центра сохраняет свою величину и направление.

Если
, то
.

Теорема и закон сохранения используются в задачах на криволинейное движение, в особенности при действии центральных сил.

Количество движения мерой механического движения, если механическое движение перейдет в механическое. Например, механическое движение бильярдного шара (рис. 22) до удара переходит в механическое движение шаров после удара. Для точки количество движения равно произведению .

Мерой действия силы в этом случае является импульс силы

. (9.1)

Импульс определяет действие силы за промежуток времени. Для материальной точки теорему об изменении количества движения можно использовать в дифференциальной форме
(9.2) или интегральной (конечной) форме
. (9.3)

Изменение количества движения материальной точки за какой-то промежуток времени равно импульсу всех сил, приложенных к точке за то же время.

Рисунок 22

При решении задач теорема (9.3) чаще используется в проекциях на координатные оси
;

; (9.4)

.

С помощью теоремы об изменении количества движения точки можно решать задачи, в которых на точку или тело, движущееся поступательно, действуют силы постоянные или переменное, зависящие от времени, а в число заданных и искомых величин входят время движения и скорости в начале и конце движения. Задачи с применением теоремы решаются следующей последовательности:

1. выбирают систему координат;

2. изображают все действующие на точку заданные (активные) силы и реакции;

3. записывают теорему об изменении количества движения точки в проекциях на выбранные оси координат;

4. определяют искомые величины.

ПРИМЕР 12.

Молот весом G=2т падает с высоты h=1м на заготовку за время t=0,01с и производит штамповку детали (рис. 23). Определить среднюю силу давления молота на заготовку.

РЕШЕНИЕ.

1. На заготовку действуют сила тяжести молота и реакция опоры. Величина опорной реакции изменяется со временем, поэтому рассмотрим среднее ее значение
.

2. направим ось координат у по вертикали вниз и применим теорему об изменении количества движения точки в проекции на эту ось:
, (1) где-- скорость молота в конце удара;

-- начальная скорость молота в момент соприкосновения с заготовкой.

3. Для определения скорости составим дифференциальное уравнение движения молота в проекции на ось у:

. (2)

Разделим переменные, проинтегрируем дважды уравнение (2):
;

;

. Постоянные интегрирования С 1 , С 2 найдем из начальных условий. При t=0 V y =0, тогда С 1 =0; у=0, тогда С 2 =0. Следовательно, молот движется по закону
, (3) а скорость движения молота изменяется по закону
. (4) Время движения молота выразим из (3) и подставим в (4)
;
. (5)

4. Проекцию импульса внешних сил на ось у найдем по формуле:
. (6) Подставим (5) и (6) в (1):
, откуда находим реакцию опоры, и, следовательно, искомое давление молота на заготовку
т.

Рисунок 24

К

где М-масса системы, V c -скорость центра масс. Теорему об изменении количества движения механической системы можно записать в дифференциальной и конечной (интегральной) форме:
;

. (9.7)

оличество движения механической системы можно определить как сумму количеств движения точек системы
. (9.5) Количество движения системы или твердого тела можно определить, зная массу системы и скорость центра масс
, (9.6)

Изменение количества движения механической системы за некоторый промежуток времени равно сумме импульсов внешних сил, Действующих за то же время. Иногда удобнее пользоваться теоремой об изменении количества движения в проекции на оси координат
; (9.8)
. (9.9)

Закон сохранения количества движения устанавливает, что при отсутствии внешних сил количество движения механической системы остается постоянным. Действие внутренних сил не может изменить количества движения системы. Из уравнения (9.6) видно, что при
,
.

Если
, то
или
.

Д

гребного винта или пропеллера, реактивного движения. Кальмары движутся рывками, выбрасывая воду из мускульного мешка по принципу водомета (рис. 25). Отталкиваемая вода обладает известным количеством движения, направленным назад. Кальмар получает при этом соответствующую скорость движения вперед за счет реактивной силы тяги, так как перед выпрыгиванием кальмара силауравновешивается силой тяжести.

ействие закона сохранения количества движения механической системы можно проиллюстрировать на примере явления отдачи или отката при стрельбе, работы

Применение теоремы об изменении количества движения позволяет исключить из рассмотрения все внутренние силы.

ПРИМЕР 13.

На железнодорожной платформе, свободно стоящей на рельсах, установлена лебедка А с барабаном радиуса r (рис. 26). Лебедка предназначена для перемещения по платформе груза В массой m 1 . Масса платформы с лебедкой m 2 . Барабан лебедки вращается по закону
. В начальный момент времени система была подвижна. Пренебрегая трением, найти закон изменения скорости платформы после включения лебедки.

РЕШЕНИЕ.

1. Рассмотрим платформу, лебедку и груз как единую механическую систему, на которую действуют внешние силы: сила тяжести груза и платформыи реакциии
.

2. Так как все внешние силы перпендикулярны оси х, т.е.
, применим закон сохранения количества движения механической системы в проекции на ось х:
. В начальный момент времени система была неподвижна, следовательно,

Выразим количество движения системы в произвольный момент времени. Платформа движется поступательно со скоростью , груз совершает сложное движение, состоящее из относительного движения по платформе со скоростьюи переносного движения вместе с платформой со скоростью., откуда
. Платформа будет перемещаться в сторону, противоположную относительному движению груза.

ПРИМЕР 14.

М

РЕШЕНИЕ.

1. Применим теорему об изменении количества движения механической системы в проекции на ось х. Так как все действующие на систему внешние силы вертикальны, то
, тогда
, откуда
. (1)

2. Выразим проекцию количества движения на ось х для рассматриваемой механической системы
,

еханическая система состоит из прямоугольной вертикальной плиты 1 массойm 1 =18кг, движущейся вдоль горизонтальных направляющих и груза D массой m 2 =6кг. В момент времени t 0 =0, когда плита двигалась со скоростью u 0 =2м/с, груз начал движение вдоль желоба в соответствии с уравнением S=AD=0,4sin(t 2) (S-в метрах, t-в секундах), (рис. 26). Определить скорость плиты в момент времени t 1 =1с, используя теорему об изменении количества движения механической системы.

где ,
-- количество движения пластины и груза соответственно.


;
, где--абсолютная скорость грузаD. Из равенства (1) следует, что К 1х +К 2х =С 1 или m 1 u x +m 2 V Dx =C 1 . (2) Для определения V Dx рассмотрим движение груза D как сложное, считая его движение по отношению к пластине относительным, а движение самой пластины переносным, тогда
, (3)
;или в проекции на ось х:. (4) Подставим (4) в (2):
. (5) Постоянную интегрирования С 1 определим из начальных условий: при t=0 u=u 0 ; (m 1 +m 2)u 0 =C 1 . (6) Подставляя значение постоянной С 1 в уравнение (5), получаем

м/с.

Рассмотрим систему, состоящую из материальных точек. Составим для этой системы дифференциальные уравнения движения (13) и сложим их почленно. Тогда получим

Последняя сумма по свойству внутренних сил равна нулю. Кроме того,

Окончательно находим

Уравнение (20) выражает теорему об изменении количества движения системы в дифференциальной форме: производная по времени от количества движения системы равна геометрической сумме всех действующих на систему внешних сил. В проекциях на координатные оси будет:

Найдем другое выражение теоремы. Пусть в момент времени количество движения системы равно а в момент становится равным . Тогда, умножая обе части равенства (20) на и интегрируя, получим

так как интегралы, стоящие справа, дают импульсы внешних сил.

Уравнение (21) выражает теорему об изменении количества движения системы в интегральной форме: изменение количества движения системы за некоторый промежуток времени равно сумме импульсов, действующих на систему внешних сил за тот же промежуток времени.

В проекциях на координатные оси будет:

Укажем на связь между доказанной теоремой и теоремой о движении центра масс. Так как , то, подставляя это значение в равенство (20) и учитывая, что получим , т. е. уравнение (16).

Следовательно, теорема о движении центра масс и теорема об изменении количества движения системы представляют собой, по существу, две разные формы одной и той же теоремы. В тех случаях, когда изучается движение твердого тела (или системы тел), можно в равной мере пользоваться любой из этих форм, причем уравнением (16) обычно пользоваться удобнее. Для непрерывной же среды (жидкость, газ) при решении задач обычно пользуются теоремой об изменении количества движения системы. Важные приложения эта теорема имеет также в теории удара (см. гл. XXXI) и при изучении реактивного движения (см. § 114).

Количеством движения материальной точки называется векторная величина mV, равная произведению массы точки на вектор ее скорости. Вектор mV приложен к движущейся точке.

Количеством движения системы называют векторную величину Q , равную геометрической сумме (главному вектору) количеств движения всех точек системы:

Вектор Q является свободным вектором. В системе единиц СИ модуль количества движения измеряется в кг м/с или Н с.

Как правило, скорости всех точек системы различны (см., например, распределение скоростей точек катящегося колеса, показанное на рис. 6.21), и поэтому непосредственное суммирование векторов в правой части равенства (17.2) является затруднительным. Найдем формулу, с помощью которой величина Q вычисляется значительно легче. Из равенства (16.4) следует, что

Взяв от обеих частей производную по времени, получим Отсюда, учитывая равенство (17.2), находим, что

т. е. количество движения системы равно произведению массы всей системы на скорость ее центра масс.

Заметим, что вектор Q, подобно главному вектору сил в статике, является некоторой обобщенной векторной характеристикой движения всей механической системы. В общем случае движения системы ее количество движения Q можно рассматривать как характеристику поступательной части движения системы вместе с ее центром масс. Если при движении системы (тела) центр масс неподвижен, то количество движения системы будет равно нулю. Таково, например, количество движения тела, вращающегося вокруг неподвижной оси, проходящей через его центр масс.

Пример. Определить количество движения механической системы (рис. 17.1, а), состоящей из груза А массой т А - 2 кг, однородного блока В массой 1 кг и колеса D массой m D - 4 кг. Груз А движется со скоростью V A - 2 м/с, колесо D катится без скольжения, нить нерастяжима и невесома. Решение. Количество движения системы тел

Тело А движется поступательно и Q A =m A V A (численно Q A = 4 кг м/с, направление вектора Q A совпадает с направлением V A). Блок В совершает вращательное движение вокруг неподвижной оси, проходящей через его центр масс; следовательно, Q B - 0. Колесо D совершает плоскопараллельное


движение; его мгновенный центр скоростей находится в точке К , поэтому скорость его центра масс (точки Е) равна V E = V A /2= 1 м/с. Количество движения колеса Q D - m D V E - 4 кг м/с; вектор Q D направлен горизонтально влево.

Изобразив векторы Q A и Q D на рис. 17.1, б , находим количество движения Q системы по формуле (а). Учитывая направления и числовые значения величин, получим Q ~^Q A +Q E =4л/2~ кг м/с, направление вектора Q показано на рис. 17.1, б.

Учитывая, что a -dV/dt, уравнение (13.4) основного закона динамики можно представить в виде

Уравнение (17.4) выражает теорему об изменении количества движения точки в дифференциальной форме: в каждый момент времени производная по времени от количества движения точки равна действующей на точку силе. (По существу это другая формулировка основного закона динамики, близкая к той, которую дал Ньютон.) Если на точку действует несколько сил, то в правой части равенства (17.4) будет равнодействующая сил, приложенных к материальной точке.

Если обе части равенства умножить на dt, то получим

Векторная величина, стоящая в правой части этого равенства, характеризует действие, оказываемое на тело силой за элементарный промежуток времени dt эту величину обозначают dS и называют элементарным импульсом силы, т. е.

Импульс S силы F за конечный промежуток времени /, - / 0 определяется как предел интегральной суммы соответствующих элементарных импульсов, т. е.


В частном случае, если сила F постоянна по модулю и по направлению, то S = F(t | -/ 0) и S- F(t l - / 0). В общем случае модуль импульса силы может быть вычислен по его проекциям на координатные оси:


Теперь, интегрируя обе части равенства (17.5) при т = const, получим

Уравнение (17.9) выражает теорему об изменении количества движения точки в конечной (интегральной) форме: изменение количества движения точки за некоторый промежуток времени равно импульсу действующей на точку силы (или импульсу равнодействующей всех приложенных к ней сил) за тот же промежуток времени.

При решении задач пользуются уравнениями этой теоремы в проекциях на координатные оси


Теперь рассмотрим механическую систему, состоящую из п материальных точек. Тогда для каждой точки можно применить теорему об изменении количества движения в форме (17.4), учитывая приложенные к точкам внешние и внутренние силы:

Суммируя эти равенства и учитывая, что сумма производных равна производной от суммы, получаем

Так как по свойству внутренних сил HF k =0 и по определению количества движения ^fn k V/ c = Q , то окончательно находим


Уравнение (17.11) выражает теорему об изменении количества движения системы в дифференциальной форме: в каждый момент времени производная по времени от количества движения системы равна геометрической сумме всех внешних сил, действующих на систему.

Проецируя равенство (17.11) на координатные оси, получим

Умножая обе части (17.11) на dt и интегрируя, получим

где 0, Q 0 - количества движения системы в моменты времени соответственно и / 0 .

Уравнение (17.13) выражает теорему об изменении количества движения системы в интегральной форме: изменение количества движения системы за какое-либо время равно сумме импульсов всех внешних сил, действующих на систему за то же время.

В проекциях на координатные оси получим

Из теоремы об изменении количества движения системы можно получить следующие важные следствия, которые выражают закон сохранения количества движения системы.

  • 1. Если геометрическая ^умма всех внешних сил, действующих на систему, равна нулю (LF k =0), то из уравнения (17.11) следует, что при этом Q = const, т. е. вектор количества движения системы будет постоянен по модулю и направлению.
  • 2. Если внешние силы, действующие на систему, таковы, что сумма их проекций на какую-либо ось равна нулю (например, I e kx = 0), то из уравнений (17.12) следует, что при этом Q x = const, т. е. проекция количества движения системы на эту ось остается неизменной.

Отметим, что внутренние силы системы не участвуют в уравнении теоремы об изменении количества движения системы. Эти силы, хотя и влияют на количество движения отдельных точек системы, не могут изменить количество движения системы в целом. Учитывая это обстоятельство, при решении задач рассматриваемую систему целесообразно выбирать так, чтобы неизвестные силы (все или их часть) сделать внутренними.

Закон сохранения количества движения удобно применять в тех случаях, когда по изменению скорости одной части системы надо определить скорость другой ее части.

Задача 17.1. К тележке массой т х - 12 кг, движущейся по гладкой горизонтальной плоскости, в точке А с помощью цилиндрического шарнира прикреплен невесомый стержень AD длиной /= 0,6 м с грузом D массой т 2 - 6 кг на конце (рис. 17.2). В момент времени / 0 = 0, когда скорость тележки и {) - 0,5 м/с, стержень AD начинает вращаться вокруг оси А, перпендикулярной плоскости чертежа, по закону ф = (тг/6)(3^ 2 - 1) рад (/-в секундах). Определить: u=f.

§ 17.3. Теорема о движении центра масс

Теорему об изменении количества движения механической системы можно выразить еще в другой форме, носящей название теоремы о движении центра масс.

Подставив в уравнение (17.11) равенство Q =MV C , получим

Если масса М системы постоянна, то получим

где а с - ускорение центра масс системы.

Уравнение (17.15) и выражает теорему о движении центра масс системы: произведение массы системы на ускорение ее центра масс равно геометрической сумме всех внешних сил, действующих на систему.

Проецируя равенство (17.15) на координатные оси, получим

где x c , y c , z c - координаты центра масс системы.

Эти уравнения представляют собой дифференциальные уравнения движения центра масс в проекциях на оси декартовой системы координат.

Обсудим полученные результаты. Предварительно напомним, что центр масс системы является геометрической точкой, расположенной подчас вне геометрических границ тела. Действующие же на механическую систему силы (внешние и внутренние) приложены ко всем материальным точкам системы. Уравнения (17.15) дают возможность определить движение центра масс системы, не определяя движения отдельных ее точек. Сопоставив уравнения (17.15) теоремы о движении центра масс и уравнения (13.5) второго закона Ньютона для материальной точки, приходим к заключению: центр масс механической системы движется как материальная точка, масса которой равна массе всей системы, и как будто бы к этой точке приложены все внешние силы, действующие на систему. Таким образом, решения, которые получаем, рассматривая данное тело как материальную точку, определяют закон движения центра масс этого тела.

В частности, если тело движется поступательно, то кинематические характеристики всех точек тела и его центра масс одинаковы. Поэтому поступательно движущееся тело можно всегда рассматривать как материальную точку с массой, равной массе всего тела.

Как видно из (17.15), внутренние силы, действующие на точки системы, не оказывают влияния на движение центра масс системы. Внутренние силы могут оказать влияние на движение центра масс в тех случаях, когда под их воздействием меняются внешние силы. Примеры этого будут приведены далее.

Из теоремы о движении центра масс можно получить следующие важные следствия, которые выражают закон сохранения движения центра масс системы.

1. Если геометрическая сумма всех внешних сил, действующих на систему, равна нулю (LF k =0), то из уравнения (17.15) следует,

что при этом а с = 0 или V c = const, т. е. центр масс этой системы

движется с постоянной по модулю и направлению скоростью (иначе, равномерно и прямолинейно). В частном случае, если вначале центр масс был в покое (V c =0), то он и останется в покое; откуда

следует, что его положение в пространстве не изменится, т. е. r c = const.

2. Если внешние силы, действующие на систему, таковы, что сумма их проекций на какую-нибудь ось (например, ось х) равна нулю (?F e kx = 0), то из уравнения (17.16) следует, что при этом х с =0 или V Cx =х с = const, т. е. проекция скорости центра масс системы на эту ось есть величина постоянная. В частном случае, если в начальный момент Vex = 0, то и в любой последующий момент времени это значение сохранится, а отсюда следует, что координата х с центра масс системы не изменится, т. е. х с - const.

Рассмотрим примеры, иллюстрирующие закон движения центра масс.

Примеры. 1. Как было отмечено, движение центра масс зависит только от внешних сил, внутренними силами изменить положение центра масс нельзя. Но внутренние силы системы могут вызвать внешние воздействия. Так, движение человека по горизонтальной поверхности происходит под действием сил трения между подошвами его обуви и поверхностью дороги. Силой своих мышц (внутренние силы) человек ногами отталкивается от поверхности дороги, отчего в точках контакта с дорогой возникает сила трения (внешняя для человека), направленная в сторону его движения.

  • 2. Аналогичным образом двигается автомобиль. Внутренние силы давления в его двигателе заставляют вращаться колеса, но так как последние имеют сцепление с дорогой, то возникающие силы трения «толкают» машину вперед (в результате колеса не вращаются, а двигаются плоскопараллельно). Если же дорога будет абсолютно гладкой, то центр масс автомобиля будет неподвижен (при нулевой начальной скорости) и колеса при отсутствии трения будут пробуксовывать, т. е. совершать вращательное движение.
  • 3. Движение с помощью гребного винта, пропеллера, весел происходит за счет отбрасывания некоторой массы воздуха (или воды). Если рассматривать отбрасываемую массу и движущееся тело как одну систему, то силы взаимодействия между ними, как внутренние, не могут изменить суммарное количество движения этой системы. Однако каждая из частей этой системы будет двигаться, например, лодка вперед, а вода, которую отбрасывают весла, - назад.
  • 4. В безвоздушном пространстве при движении ракеты «отбрасываемую массу» следует «брать с собой»: реактивный двигатель сообщает движение ракете за счет отброса назад продуктов горения топлива, которым заправлена ракета.
  • 5. При спуске на парашюте можно управлять движением центра масс системы человек - парашют. Если мышечными усилиями человек подтягивает стропы парашюта так, что меняется форма его купола либо угол атаки воздушного потока, то это вызовет изменение и внешнего воздействия воздушного потока, а тем самым оказывается влияние на движение всей системы.

Задача 17.2. В задаче 17.1 (см. рис. 17.2) определить: 1) закон движения тележки х { = /)(/), если известно, что в начальный момент времени t 0 = О система находилась в покое и координата х 10 = 0; 2) ^акон изменения со временем суммарного значения нормальной реакции N(N = N" + N") горизонтальной плоскости, т. е. N=f 2 (t).

Решение. Здесь, как и в задаче 17.1, рассмотрим систему, состоящую из тележки и груза D, в произвольном положении под действием приложенных к ней внешних сил (см. рис. 17.2). Координатные оси Оху проведем так, чтобы ось х была горизонтальна, а ось у проходила через точку А 0 , т. е. место расположения точки А в момент времени t-t 0 - 0.

1. Определение закона движения тележки. Для определения х, = /,(0 воспользуемся теоремой о движении центра масс системы. Составим дифференциальное уравнение его движения в проекции на ось х:

Так как все внешние силы вертикальны, то T,F e kx = 0, и, следовательно,

Проинтегрировав это уравнение, найдем, что Мх с = В, т. е. проекция скорости центра масс системы на ось х есть величина постоянная. Так как в начальный момент времени

Интегрируя уравнение Мх с = 0, получим

т. е. координата х с центра масс системы постоянна.

Запишем выражение Мх с для произвольного положения системы (см. рис. 17.2), приняв во внимание, что х А - х { , x D - х 2 и х 2 - х { - I sin ф. В соответствии с формулой (16.5), определяющей координату центра масс системы, в данном случае Мх с - т { х { + т 2 х 2 ".

для произвольного момента времени

для момента времени / () = 0, х { = 0 и

В соответствии с равенством (б) координата х с центра масс всей системы остается неизменной, т. е. хД^,) = x c (t). Следовательно, приравняв выражения (в) и (г), получим зависимость координаты х, от времени.

О т в е т: Х - 0,2 м, где t - в секундах.

2. Определение реакции N. Для определения N=f 2 (t ) составим дифференциальное уравнение движения центра масс системы в проекции на вертикальную ось у (см. рис. 17.2):

Отсюда, обозначив N= N + N", получим

По формуле, определяющей ординату у с центра масс системы, Му с = т { у х + т 2 у 2 , где у, = у С1 , у 2 = y D = У а ~ 1 cos Ф» получим

Продифференцировав это равенство два раза по времени (учитывая при этом, что у С1 и у А величины постоянные и, следовательно, их производные равны нулю), найдем


Подставив это выражение в уравнение (е), определим искомую зависимость N от t.

Ответ: N- 176,4 + 1,13,

где ф = (я/6)(3/ -1), t - в секундах, N- в ньютонах.

Задача 17.3. Электрический мотор массой т х прикреплен на горизонтальной поверхности фундамента болтами (рис. 17.3). На валу мотора под прямым углом к оси вращения закреплен одним концом невесомый стержень длиной /, на другом конце стержня насажен точечный груз А массой т 2 . Вал вращается равномерно с угловой скоростью со. Найти горизонтальное давление мотора на болты. Решение. Рассмотрим механическую систему, состоящую из мотора и точечного груза А, в произвольном положении. Изобразим действующие на систему внешние силы: силы тяжести Р х, Р 2 , реакцию фундамента в виде вертикальной силы N и горизонтальной силы R. Проведем координатную ось х горизонтально.

Чтобы определить горизонтальное давление мотора на болты (а оно будет численно равно реакции R и направлено противоположно вектору R ), составим уравнение теоремы об изменении количества движения системы в проекции на горизонтальную ось х:

Для рассматриваемой системы в ее произвольном положении, учитывая, что количество движения корпуса мотора равно нулю, получим Q x = - т 2 У А сощ. Принимая во внимание, что V A = a з/, ф = со/ (вращение мотора равномерное), получим Q x - - m 2 co/cos со/. Дифференцируя Q x по времени и подставляя в равенство (а), найдем R- m 2 co 2 /sin со/.

Заметим, что именно такие силы являются вынуждающими (см. § 14.3), при их воздействии возникают вынужденные колебания конструкций.

Упражнения для самостоятельной работы

  • 1. Что называют количеством движения точки и механической системы?
  • 2. Как изменяется количество движения точки, равномерно движущейся по окружности?
  • 3. Что характеризует импульс силы?
  • 4. Влияют ли внутренние силы системы на ее количество движения? На движение ее центра масс?
  • 5. Как влияют на движение центра масс системы приложенные к ней пары сил?
  • 6. При каких условиях центр масс системы находится в покое? движется равномерно и прямолинейно?

7. В неподвижной лодке при отсутствии течения воды на корме сидит взрослый человек, а на носу лодки - ребенок. В каком направлении переместится лодка, если они поменяются местами?

В каком случае модуль перемещения лодки будет большим: 1) если ребенок перейдет к взрослому на корму; 2) если взрослый перейдет к ребенку на нос лодки? Каковы будут при этих движениях перемещения центра масс системы «лодка и два человека»?



Поделиться