Среднее и истинное ускорение точки. Сложное движение точки

Скорость точки.

Перейдем к решению второй основной задачи кинематики точки - определению скорости и ускорения по уже заданному векторным, координатным или естественным способом движению.

1. Скоростью точки называется векторная величина, характеризующая быстроту и направление перемещения точки . В системе СИ скорость измеряется в м/с.

a) Определение скорости при векторном способе задания движения .

Пусть движение точки задано векторным способом, т.е. известно векторное уравнение (2.1): .

Рис. 2.6. К определению скорости точки

Пусть за время Dt радиус-вектор точки М изменится на величину . Тогда средней скоростью точки М за время Dt называется векторная величина

Вспоминая определение производной, заключаем:

Здесь и в дальнейшем знаком будем обозначать дифференцирование по времени. При стремлении Dt к нулю вектор , а, следовательно, и вектор , поворачиваются вокруг точки М и в пределе совпадают с касательной к траектории в этой точке. Таким образом, вектор скорости равен первой производной от радиус-вектора по времени и всегда направлен по касательной к траектории движения точки.

б) Скорость точки при координатном способе задания движения.

Выведем формулы для определения скорости при координатном способе задания движения. В соответствии с выражением (2.5), имеем:

Так как производные от постоянных по величине и направлению единичных векторов равны нулю, получаем

Вектор , как и любой вектор, может быть выражен через свои проекции:

Сравнивая выражения (2.6) и (2.7) видим, что производные координат по времени имеют вполне определенный геометрический смысл - они являются проекциями вектора скорости на координатные оси. Зная проекции, легко вычислить модуль и направление вектора скорости (рис. 2.7):

Рис. 2.7.К определению величины и направления скорости

в) Определение скорости при естественном способе задания движения.

Рис. 2.8. Cкорость точки при естественном способе задания движения

Согласно (2.4) ,

где - единичный вектор касательной. Таким образом,

Величина V =dS/dt называется алгебраической скоростью. Если dS/dt>0 , то функция S = S(t) возрастает и точка движется в сторону увеличения дуговой координаты S, т.е. точка движется в положительном направлении Если же dS/dt<0 , то точка движется в противоположном направлении.

2. Ускорение точки

Ускорением называется векторная величина, характеризующая быстроту изменения модуля и направления вектора скорости . В системе СИ ускорение измеряется в м/с 2 .


a) Определение ускорения при векторном способе задания движения .

Пусть точка М в момент времени t находится в положении М(t) и имеет скорость V(t), а в момент времени t + Dt находится в положении М(t + Dt) и имеет скорость V(t + Dt) (см. рис. 2.9).

Рис. 2.9. Ускорения точки при векторном способе задания движения

Средним ускорением за промежуток времени Dt называется отношение изменения скорости к Dt , т.е.

Предел при Dt ® 0 называется мгновенным (или просто ускорением) точки М в момент времени t

Согласно (2.11), ускорение при векторном способе задания движения равно векторной производной от скорости по времени.

б). Ускорения при координатном способе задания движения .

Подставляя (2.6) в (2.11) и дифференцируя произведения в скобках, находим:

Учитывая, что производные от единичных векторов равны нулю, получаем:

Вектор может быть выражен через свои проекции:

Сравнение (2.12) и (2.13) показывает, что вторые производные от координат по времени имеют вполне определенный геометрический смысл: они равны проекциям полного ускорения на координатные оси, т.e.

Зная проекции, легко вычислить модуль полного ускорения и направляющие косинусы, определяющие его направление:

в). Ускорение точки при естественном способе задания движения

Приведем некоторые сведения из дифференциальной геометрии, необходимые для определения ускорения при естественном способе задания движения.

Пусть точка М движется по некоторой пространственной кривой. С каждой точкой этой кривой связаны три взаимно ортогональные направления (касательная, нормаль и бинормаль), однозначно характеризующие пространственную ориентацию бесконечно малого элемента кривой вблизи данной точки. Ниже приводится описание процесса определения указанных направлений.

Для того чтобы провести касательную к кривой в точке М , проведем через нее и близлежащую точку М 1 секущую ММ 1 .

Рис. 2.10. Определение касательной к траектории движения точки

Касательная к кривой в точке М определяется как предельное положение секущей ММ 1 при стремлении точки М 1 к точке М (рис. 2.10). Единичный вектор касательной принято обозначать греческой буквой .

Проведем единичные векторы касательных к траектории в точках М и М 1 . Перенесем вектор в точку М (рис. 2.11) и образуем плоскость, проходящую через эту точку и векторы и . Повторяя процесс образования аналогичных плоскостей при стремлении точки М 1 к точке М , мы получаем в пределе плоскость, называемую соприкасающейся плоскостью.

Рис. 2.11. Определение соприкасающейся плоскости

Очевидно, что для плоской кривой соприкасающаяся плоскость совпадает с плоскостью, в которой лежит сама эта кривая. Плоскость, проходящая через точку М и перпендикулярная касательной в этой точке, называется нормальной плоскостью. Пересечение соприкасающейся и нормальной плоскостей образует прямую, называемую главной нормалью (рис. 2.12).

Даны основные формулы кинематики материальной точки, их вывод и изложение теории.

Содержание

См. также: Пример решения задачи (координатный способ задания движения точки)

Основные формулы кинематики материальной точки

Приведем основные формулы кинематики материальной точки. После чего дадим их вывод и изложение теории.

Радиус-вектор материальной точки M в прямоугольной системе координат Oxyz :
,
где - единичные векторы (орты) в направлении осей x, y, z .

Скорость точки:
;
.
.
Единичный вектор в направлении касательной к траектории точки:
.

Ускорение точки:
;
;
;
; ;

Тангенциальное (касательное) ускорение:
;
;
.

Нормальное ускорение:
;
;
.

Единичный вектор, направленный к центру кривизны траектории точки (вдоль главной нормали):
.


.

Радиус-вектор и траектория точки

Рассмотрим движение материальной точки M . Выберем неподвижную прямоугольную систему координат Oxyz с центром в некоторой неподвижной точке O . Тогда положение точки M однозначно определяются ее координатами (x, y, z) . Эти координаты являются компонентами радиус-вектора материальной точки.

Радиус-вектор точки M - это вектор , проведенный из начала неподвижной системы координат O в точку M .
,
где - единичные векторы в направлении осей x, y, z .

При движении точки, координаты изменяются со временем . То есть они являются функциями от времени . Тогда систему уравнений
(1)
можно рассматривать как уравнение кривой, заданной параметрическими уравнениями. Такая кривая является траекторией точки.

Траектория материальной точки - это линия, вдоль которой происходит движение точки.

Если движение точки происходит в плоскости, то можно выбрать оси и системы координат так, чтобы они лежали в этой плоскости. Тогда траектория определяется двумя уравнениями

В некоторых случаях, из этих уравнений можно исключить время . Тогда уравнение траектории будет иметь зависимость вида:
,
где - некоторая функция. Эта зависимость содержит только переменные и . Она не содержит параметр .

Скорость материальной точки

Скорость материальной точки - это производная ее радиус-вектора по времени.

Согласно определению скорости и определению производной:

Производные по времени, в механике, обозначают точкой над символом. Подставим сюда выражение для радиус-вектора:
,
где мы явно обозначили зависимость координат от времени. Получаем:

,
где
,
,

- проекции скорости на оси координат. Они получаются дифференцированием по времени компонент радиус-вектора
.

Таким образом
.
Модуль скорости:
.

Касательная к траектории

С математической точки зрения, систему уравнений (1) можно рассматривать как уравнение линии (кривой), заданной параметрическими уравнениями. Время , при таком рассмотрении, играет роль параметра. Из курса математического анализа известно, что направляющий вектор для касательной к этой кривой имеет компоненты:
.
Но это есть компоненты вектора скорости точки. То есть скорость материальной точки направлена по касательной к траектории .

Все это можно продемонстрировать непосредственно. Пусть в момент времени точка находится в положении с радиус-вектором (см. рисунок). А в момент времени - в положении с радиус-вектором . Через точки и проведем прямую . По определению, касательная - это такая прямая , к которой стремится прямая при .
Введем обозначения:
;
;
.
Тогда вектор направлен вдоль прямой .

При стремлении , прямая стремится к касательной , а вектор - к скорости точки в момент времени :
.
Поскольку вектор направлен вдоль прямой , а прямая при , то вектор скорости направлен вдоль касательной .
То есть вектор скорости материальной точки направлен вдоль касательной к траектории.

Введем направляющий вектор касательной единичной длины :
.
Покажем, что длина этого вектора равна единице. Действительно, поскольку
, то:
.

Тогда вектор скорости точки можно представить в виде:
.

Ускорение материальной точки

Ускорение материальной точки - это производная ее скорости по времени.

Аналогично предыдущему, получаем компоненты ускорения (проекции ускорения на оси координат):
;
;
;
.
Модуль ускорения:
.

Тангенциальное (касательное) и нормальное ускорения

Теперь рассмотрим вопрос о направлении вектора ускорения по отношению к траектории. Для этого применим формулу:
.
Дифференцируем ее по времени, применяя правило дифференцирования произведения:
.

Вектор направлен по касательной к траектории. В какую сторону направлена его производная по времени ?

Чтобы ответить на этот вопрос, воспользуемся тем, что длина вектора постоянна и равна единице. Тогда квадрат его длины тоже равен единице:
.
Здесь и далее, два вектора в круглых скобках обозначают скалярное произведение векторов. Продифференцируем последнее уравнение по времени:
;
;
.
Поскольку скалярное произведение векторов и равно нулю, то эти векторы перпендикулярны друг другу. Так как вектор направлен по касательной к траектории, то вектор перпендикулярен к касательной.

Первую компоненту называют тангенциальным или касательным ускорением:
.
Вторую компоненту называют нормальным ускорением:
.
Тогда полное ускорение:
(2) .
Эта формула представляет собой разложение ускорения на две взаимно перпендикулярные компоненты - касательную к траектории и перпендикулярную к касательной.

Поскольку , то
(3) .

Тангенциальное (касательное) ускорение

Умножим обе части уравнения (2) скалярно на :
.
Поскольку , то . Тогда
;
.
Здесь мы положили:
.
Отсюда видно, что тангенциальное ускорение равно проекции полного ускорения на направление касательной к траектории или, что тоже самое, на направление скорости точки.

Тангенциальное (касательное) ускорение материальной точки - это проекция ее полного ускорения на направление касательной к траектории (или на направление скорости).

Символом мы обозначаем вектор тангенциального ускорения, направленный вдоль касательной к траектории. Тогда - это скалярная величина, равная проекции полного ускорения на направление касательной. Она может быть как положительной, так и отрицательной.

Подставив , имеем:
.

Подставим в формулу:
.
Тогда:
.
То есть тангенциальное ускорение равно производной по времени от модуля скорости точки. Таким образом, тангенциальное ускорение приводит к изменению абсолютной величины скорости точки . При увеличении скорости, тангенциальное ускорение положительно (или направлено вдоль скорости). При уменьшении скорости, тангенциальное ускорение отрицательно (или направлено противоположно скорости).

Теперь исследуем вектор .

Рассмотрим единичный вектор касательной к траектории . Поместим его начало в начало системы координат. Тогда конец вектора будет находиться на сфере единичного радиуса. При движении материальной точки, конец вектора будет перемещаться по этой сфере. То есть он будет вращаться вокруг своего начала. Пусть - мгновенная угловая скорость вращения вектора в момент времени . Тогда его производная - это скорость движения конца вектора. Она направлена перпендикулярно вектору . Применим формулу для вращающегося движения. Модуль вектора:
.

Теперь рассмотрим положение точки для двух близких моментов времени. Пусть в момент времени точка находится в положении , а в момент времени - в положении . Пусть и - единичные векторы, направленные по касательной к траектории в этих точках. Через точки и проведем плоскости, перпендикулярные векторам и . Пусть - это прямая, образованная пересечением этих плоскостей. Из точки опустим перпендикуляр на прямую . Если положения точек и достаточно близки, то движение точки можно рассматривать как вращение по окружности радиуса вокруг оси , которая будет мгновенной осью вращения материальной точки. Поскольку векторы и перпендикулярны плоскостям и , то угол между этими плоскостями равен углу между векторами и . Тогда мгновенная скорость вращения точки вокруг оси равна мгновенной скорости вращения вектора :
.
Здесь - расстояние между точками и .

Таким образом мы нашли модуль производной по времени вектора :
.
Как мы указали ранее, вектор перпендикулярен вектору . Из приведенных рассуждений видно, что он направлен в сторону мгновенного центра кривизны траектории. Такое направление называется главной нормалью.

Нормальное ускорение

Нормальное ускорение

направлено вдоль вектора . Как мы выяснили, этот вектор направлен перпендикулярно касательной, в сторону мгновенного центра кривизны траектории.
Пусть - единичный вектор, направленный от материальной точки к мгновенному центру кривизны траектории (вдоль главной нормали). Тогда
;
.
Поскольку оба вектора и имеют одинаковое направление - к центру кривизны траектории, то
.

Из формулы (2) имеем:
(4) .
Из формулы (3) находим модуль нормального ускорения:
.

Умножим обе части уравнения (2) скалярно на :
(2) .
.
Поскольку , то . Тогда
;
.
Отсюда видно, что модуль нормального ускорения равен проекции полного ускорения на направление главной нормали.

Нормальное ускорение материальной точки - это проекция ее полного ускорения на направление, перпендикулярное к касательной к траектории.

Подставим . Тогда
.
То есть нормальное ускорение вызывает изменение направления скорости точки, и оно связано с радиусом кривизны траектории .

Отсюда можно найти радиус кривизны траектории:
.

И в заключении заметим, что формулу (4) можно переписать в следующем виде:
.
Здесь мы применили формулу для векторного произведения трех векторов:
,
в которую подставили
.

Итак, мы получили:
;
.
Приравняем модули левой и правой частей:
.
Но векторы и взаимно перпендикулярны. Поэтому
.
Тогда
.
Это известная формула из дифференциальной геометрии для кривизны кривой.

См. также: 1. Способы задания движения точки в заданной системе отсчета

Основными задачами кинематики точки являются:

1. Описание способов задания движения точки.

2. Определение кинематических характеристик движения точки (скорости, ускорения) по заданному закону движения.

Механическое движение изменение положения одного тела относительно другого (тела отсчета), с которым связана система координат, называемая системой отсчета .

Геометрическое место последовательных положений движущейся точки в рассматриваемой системе отсчета называется траектория точки.

Задать движение − это дать способ, с помощью которого можно определить положение точки в любой момент времени по отношению к выбранной системе отсчета. К основным способам задания движения точки относятся:

векторный, координатный и естественный .

1.Векторный способ задания движения (рис. 1).

Положение точки определяется радиус-вектором, проведенным из неподвижной точки, связанной с телом отсчета: − векторное уравнение движения точки.

2.Координатный способ задания движения (рис. 2).

В этом случае задаются координаты точки как функции времени:

- уравнения движения точки в координатной форме.

Это и параметрические уравнения траектории движущейся точки, в которых роль параметра играет время . Чтобы записать ее уравнение в явной форме, надо исключить из них . В случае пространственной траектории, исключив , получим:

В случае плоской траектории

исключив , получим:

Или .

3. Естественный способ задания движения (рис. 3).

В этом случае задаются:

1)траектория точки,

2)начало отсчета на траектории,

3) положительное направление отсчета,

4)закон изменения дуговой координаты: .

Этим способом удобно пользоваться, когда траектория точки заранее известна.

2. Скорость и ускорение точки

Рассмотрим перемещение точки за малый промежуток времени (рис. 4):

Тогда − средняя скорость точки за промежуток времени .

Скорость точки в данный момент времени находится как предел средней скорости при :

Скорость точки − это кинематическая мера ее движения, равная производной по времени от радиус-вектора этой точки в рассматриваемой системе отсчета.

Вектор скорости направлен по касательной к траектории точки в сторону движения.

Среднее ускорениехарактеризует изменение вектора скорости за малый промежуток времени (рис. 5).

Ускорение точки в данный момент времени находится как предел среднего ускорения при :

Ускорение точки − это мера изменения ее скорости, равная производной по времени от скорости этой точки или второй производной от радиус-вектора точки по времени .

Ускорение точки характеризует изменение вектора скорости по величине и направлению. Вектор ускорения направлен в сторону вогнутости траектории.

3. Определение скорости и ускорения точки при координатном способе задания движения

Связь векторного способа задания движения и координатного дается соотношением

(рис. 6).

Из определения скорости:

Проекции скорости на оси координат равны производным соответствующих координат по времени

, , . .

Модуль и направление скорости определяются выражениями:

Точкой сверху здесь и в дальнейшем обозначается дифференцирование по времени

Из определения ускорения:

Проекции ускорения на оси координат равны вторым производным соответствующих координат по времени:

, , .

Модуль и направление ускорения определяются выражениями:

, , .

4 Скорость и ускорение точки при естественном способе задания движения

4.1 Естественные оси.

Определение скорости и ускорения точки при естественном способе задания движения

Естественные оси (касательная, главная нормаль, бинормаль) − это оси подвижной прямоугольной системы координат с началом в движущейся точке. Их положение определяется траекторией движения. Касательная (с единичным вектором ) направлена по касательной в положительном направлении отсчета дуговой координаты и находится как предельное положение секущей, проходящей через данную точку (рис.9). Через касательную проходит соприкасающаяся плоскость (рис. 10), которая находится как предельное положение плоскости p при стремлении точки M1 к точке M. Нормальная плоскость перпендикулярна касательной. Линия пересечения нормальной и соприкасающейся плоскостей − главная нормаль. Единичный вектор главной нормали направлен в сторону вогнутости траектории. Бинормаль (с единичным вектором ) направлена перпендикулярно касательной и главной нормали так, что орты , и образуют правую тройку векторов. Координатные плоскости введенной подвижной системы координат (соприкасающаяся, нормальная и спрямляющая) образуют естественный трехгранник, который перемещается вместе с движущейся точкой, как твердое тело. Его движение в пространстве определяется траекторией и законом изменения дуговой координаты.

Из определения скорости точки

где , − единичный вектор касательной.

Тогда

, .

Алгебраическая скорость − проекция вектора скорости на касательную, равная производной от дуговой координаты по времени. Если производная положительна, то точка движется в положительном направлении отсчета дуговой координаты.

Из определения ускорения

− переменный по направлению вектор и

Производная определяется только видом траектории в окрестности данной точки, при этом, вводя в рассмотрение угол поворота касательной, имеем , где − единичный вектор главной нормали, − кривизна траектории, − радиус кривизны траектории в данной точке.

Пусть теперь известна функция . На рис. 5.10
и
 векторы скорости движущейся точки в моменты t и t . Чтобы получить приращение вектора скорости
перенесем параллельно вектор
в точкуМ :

Средним ускорением точки за промежуток времени t называется отношение приращения вектора скорости
к промежутку времениt :

Следовательно, ускорение точки в данный момент времени равно первой производной по времени от вектора скорости точки или второй производной радиус-вектора по времени

. (5.11)

Ускорение точки это векторная величина, характеризующая быстроту изменения вектора скорости по времени.

Построим годограф скорости (рис.5.11). Годографом скорости по определению является кривая, которую вычерчивает конец вектора скорости при движении точки, если вектор скорости откладывается из одной и той же точки.

Определение скорости точки при координатном способе задания её движения

Пусть движение точки задано координатным способом в декартовой системе координат

х = x (t ), y = y (t ), z = z (t )

Радиусвектор точки равен

.

Так как единичные векторы
постоянны, то по определению

. (5.12)

Обозначим проекции вектора скорости на оси Ох , Оу и Oz через V x , V y , V z

(5.13)

Сравнивая равенства (5.12) и (5.13) получим


(5.14)

В дальнейшем производную по времени будем обозначать точкой сверху, т.е.

.

Модуль скорости точки определяется формулой

. (5.15)

Направление вектора скорости определяется направляющими косинусами:

Определение ускорения точки при координатном способе задания её движения

Вектор скорости в декартовой системе координат равен

.

По определению

Обозначим проекции вектора ускорения на оси Ох , Оу и Oz через а x , а y , а z соответственно и разложим вектор скорости по осям:

. (5.17)

Сравнивая равенства (5.16) и (5.17) получим

Модуль вектора ускорения точки вычисляется аналогично модулю вектора скорости точки:

, (5.19)

а направление вектора ускорения  направляющими косинусами:

Определение скорости и ускорения точки при естественном способе задания её движения

При этом способе используются естественные оси с началом в текущем положении точки М на траектории (рис.5.12) и единичными векторами
Единичный векторнаправлен по касательной к траектории в сторону положитель ного отсчета дуги, единичный вектор направлен по главной нормали траектории в сторону ее вогнутости, единичный векторнаправлен по бинормали к траектории в точкеМ .

Орты илежат всоприкасающейся плоскости , орты ивнормальной плоскости , орты и в спрямляющей плоскости .

Полученный трехгранник называется естественным.

Пусть задан закон движения точки s = s (t ).

Радиус вектор точкиМ относительно какойлибо фиксированной точки будет сложной функцией времени
.

Из дифференциальной геометрии известны формулы СерреФрене, устанавливающие связи между единичными векторами естественных осей и векторфункцией кривой

где   радиус кривизны траектории.

Используя определение скорости и формулы СерреФрене, получим:

. (5.20)

Обозначая проекцию скорости на касательную и учитывая, что вектор скорости направлен по касательной, имеем

. (5.21)

Сравнивая равенства (5.20) и (5.21), получим формулы для определения вектора скорости по величине и направлению

Величина положительна, если точкаМ движется в положительном направлении отсчета дуги s и отрицательна в противоположном случае.

Используя определение ускорения и формулы СерреФрене, получим:

Обозначим проекцию ускорения точки на касательную, главную нормаль и бинормаль
соответственно.

Тогда ускорение равно

Из формул (5.23) и (5.24) следует, что вектор ускорения всегда лежит в соприкасающейся плоскости и раскладывается по направлениям и:

(5.25)

Проекция ускорения на касательную
называетсякасательным или тангенциальным ускорением . Оно характеризует изменение величины скорости.

Проекция ускорения на главную нормаль
называетсянормальным ускорением . Оно характеризует изменение вектора скорости по направлению.

Модуль вектора ускорения равен
.

Если иодного знака, то движение точки будет ускоренным.

Если иразных знаков, то движение точки будет замедленным.

Скоростью точки называется вектор, определяющий в каждый данный момент времени быстроту и направление движения точки.

Скорость равномерного движения определяется отношением пути, пройденного точкой за некоторый промежуток времени, к величине этого промежутка времени.

Скорость; S- путь; t- время.

Измеряется скорость в единицах длины, деленных на единицу времени: м/с; см/с; км/ч и т.д.

В случае прямолинейного движения вектор скорости направлен вдоль траектории в сторону ее движения.

Если точка за равные промежутки времени проходит неравные пути, то данное движение называется неравномерным. Скорость является величиной переменной и является функцией времени.

Средней за данный промежуток времени скоростью точки называется скорость такого равномерного прямолинейного движения, при котором точка за этот промежуток времени получила бы то же самое перемещение, как и в рассматриваемом ее движении.

Рассмотрим точку М, которая перемещается по криволинейной траектории, заданной законом

За промежуток времени?t точка М переместится в положение М 1 по дуге ММ 1 .Если промежуток времени?t мал, то дугу ММ 1 можно заменить хордой и в первом приближении найти среднюю скорость движения точки

Эта скорость направлена по хорде от точки М к точке М 1 . Истинную скорость найдем путем перехода к пределу при?t> 0

Когда?t> 0, направление хорды в пределе совпадает c направлением касательной к траектории в точке М.

Таким образом, величина скорости точки определяется как предел отношения приращения пути к соответствующему промежутку времени при стремлении последнего к нулю. Направление скорости совпадает с касательной к траектории в данной точке.

Ускорение точки

Отметим, что в общем случае, при движении по криволинейной траектории скорость точки изменяется и по направлению и по величине. Изменение скорости в единицу времени определяется ускорением. Другими словами, ускорением точки называется величина, характеризующая быстроту изменения скорости во времени. Если за интервал времени?t скорость изменяется на величину,то среднее ускорение

Истинным ускорением точки в данный момент времени t называется величина, к которой стремится среднее ускорение при?t> 0, то есть

При отрезке времени стремящимся к нулю вектор ускорения будет меняться и по величине и по направлению, стремясь к своему пределу.

Размерность ускорения

Ускорение может выражаться в м/с 2 ; см/с 2 и т.д.

В общем случае, когда движение точки задано естественным способом, вектор ускорения обычно раскладывают на две составляющие, направленные по касательной и по нормали к траектории точки.

Тогда ускорение точки в момент t можно представить так

Обозначим составляющие пределы через и.

Направление вектора не зависит от величины промежутка?t времени.

Это ускорение всегда совпадает с направлением скорости, то есть, направлено по касательной к траектории движения точки и поэтому называется касательным или тангенциальным ускорением.

Вторая составляющая ускорения точки направлена перпендикулярно к касательной к траектории в данной точке в сторону вогнутости кривой и влияет на изменение направления вектора скорости. Эта составляющая ускорения носит название нормального ускорения.

Поскольку численное значение вектора равно приращению скорости точки за рассматриваемый промежуток?t времени, то численное значение касательного ускорения

Численное значение касательного ускорения точки равно производной по времени от численной величины скорости. Численное значение нормального ускорения точки равно квадрату скорости точки, деленному на радиус кривизны траектории в соответствующей точке кривой

Полное ускорение при неравномерном криволинейном движении точки складывается геометрически из касательного и нормального ускорений.



Поделиться