Научная электронная библиотека. Сумма углов треугольника

Сумма углов треугольника - важная, но достаточно простая тема, которую проходят в 7 классе на геометрии. Тема состоит из теоремы, короткого доказательства и нескольких логичных следствий. Знание этой темы помогает в решении геометрических задач при последующем изучении предмета.

Теорема - чему равны сложенные между собой углы произвольного треугольника?

Теорема гласит - если взять любой треугольник вне зависимости от его вида, сумма всех углов неизменно составит 180 градусов. Доказывается это следующим образом:

  • для примера берут треугольник АВС, через расположенную на вершине точку В проводят прямую линию и обозначают ее, как «а», прямая «а» при этом строго параллельна стороне АС;
  • между прямой «а» и сторонами АВ и ВС обозначают углы, маркируя их цифрами 1 и 2;
  • угол 1 признают равным углу А, а угол 2 - равным углу С, поскольку эти углы считаются накрест лежащими;
  • таким образом, сумма между углами 1, 2 и 3 (который обозначается на месте угла В) признается равной развернутому углу с вершиной В - и составляет 180 градусов.

Если сумма углов, обозначенных цифрами, составляет 180 градусов, то и сумма углов А, В и С признается равной 180 градусам. Это правило верно для любого треугольника.

Что следует из геометрической теоремы

Принято выделять несколько следствий из приведенной теоремы.

  • Если в задаче рассматривается треугольник с прямым углом, то один из его углов будет по умолчанию равен 90 градусам, а сумма острых углов также составит 90 градусов.
  • Если речь идет о прямоугольном равнобедренном треугольнике, то его острые углы, в сумме составляющие 90 градусов, по отдельности будут равны 45 градусам.
  • Равносторонний треугольник состоит из трех равных углов, соответственно, каждый из них будет равен 60 градусам, а в сумме они составят 180 градусов.
  • Внешний угол любого треугольника будет равняться сумме между двумя внутренними углами, не прилегающими к нему.

Можно вывести следующее правило - в любом из треугольников есть как минимум два острых угла. В некоторых случаях треугольник состоит из трех острых углов, а если их только два, то третий угол будет тупым либо прямым.

Доказательство

Пусть ABC" - произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC (такая прямая называется прямой Евклида). Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны от прямой BC .Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD . Поэтому сумма углов треугольника при вершинах B и С равна углу ABD .Сумма всех трех углов треугольника равна сумме углов ABD и BAC . Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB , то их сумма равна 180°. Теорема доказана.

Следствия

Из теоремы следует, что у любого треугольника два угла острые. Действительно, применяя доказательство от противного , допустим, что у треугольника только один острый угол или вообще нет острых углов. Тогда у этого треугольника есть, по крайней мере, два угла, каждый из которых не меньше 90°. Сумма этих углов не меньше 180°. А это невозможно, так как сумма всех углов треугольника равна 180°. Что и требовалось доказать.

Обобщение в симплекс теории

Где -угол между i и j гранями симплекса.

Примечания

  • На сфере сумма углов треугольника всегда превышает 180°, разница называется сферическим избытком и пропорциональна площади треугольника.
  • В плоскости Лобачевского сумма углов треугольника всегда меньше 180°. Разность также пропорциональна площади треугольника.

См. также


Wikimedia Foundation . 2010 .

  • Тейлор
  • Нижний Лебяжий мост

Смотреть что такое "Теорема о сумме углов треугольника" в других словарях:

    Теорема о сумме углов многоугольника - Свойство многоугольников в евклидовой геометрии: Сумма углов n угольника равна 180°(n 2). Содержание 1 Доказательство 2 Замечание … Википедия

    Теорема Пифагора - Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Содержание 1 … Википедия

    Площадь треугольника

    Пифагора теорема - Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Содержание 1 Формулировки 2 Доказательства … Википедия

    Косинусов теорема - Теорема косинусов обобщение теоремы Пифагора. Квадрат стороны треугольника равен сумме квадратов двух других его сторон без удвоенного произведения этих сторон на косинус угла между ними. Для плоского треугольника со сторонами a,b,c и углом α… … Википедия

    Треугольник - У этого термина существуют и другие значения, см. Треугольник (значения). Треугольник (в евклидовом пространстве) это геометрическая фигура, образованная тремя отрезками, которые соединяют три не лежащие на одной прямой точки. Три точки,… … Википедия

    Признаки равенства треугольников - Стандартные обозначения Треугольник простейший многоугольник, имеющий 3 вершины (угла) и 3 стороны; часть плоскости, ограниченная тремя точками, не лежащими на одной прямой, и тремя отрезками, попарно соединяющими эти точки. Вершины треугольника … Википедия

    Евклид - древнегреческий математик. Работал в Александрии в III в. до н. э. Главный труд «Начала» (15 книг), содержащий основы античной математики элементарной геометрии, теории чисел, общей теории отношений и метода определения площадей и объёмов,… … Энциклопедический словарь

    ЕВКЛИД - (умер между 275 и 270 до н. э.) древнегреческий математик. Сведения о времени и месте его рождения до нас не дошли, однако известно, что Евклид жил в Александрии и расцвет его деятельности приходится на время царствования в Египте Птолемея I… … Большой Энциклопедический словарь

    НЕЕВКЛИДОВА ГЕОМЕТРИЯ - геометрия, сходная с геометрией Евклида в том, что в ней определено движение фигур, но отличающаяся от евклидовой геометрии тем, что один из пяти ее постулатов (второй или пятый) заменен его отрицанием. Отрицание одного из евклидовых постулатов… … Энциклопедия Кольера

Доказательство:

  • Дан треугольник АВС.
  • Через вершину B проведем прямую DK параллельно основанию AC.
  • \angle CBK= \angle C как внутренние накрест лежащие при параллельных DK и AC, и секущей BC.
  • \angle DBA = \angle A внутренние накрест лежащие при DK \parallel AC и секущей AB. Угол DBK развернутый и равен
  • \angle DBK = \angle DBA + \angle B + \angle CBK
  • Так как развернутый угол равен 180 ^\circ , а \angle CBK = \angle C и \angle DBA = \angle A , то получим 180 ^\circ = \angle A + \angle B + \angle C.

Теорема доказана

Следствия из теоремы о сумме углов треугольника:

  1. Сумма острых углов прямоугольного треугольника равна 90° .
  2. В равнобедренном прямоугольном треугольнике каждый острый угол равен 45° .
  3. В равностороннем треугольнике каждый угол равен 60° .
  4. В любом треугольнике либо все углы острые, либо два угла острые, а третий - тупой или прямой.
  5. Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.

Теорема о внешнем угле треугольника

Внешний угол треугольника равен сумме двух оставшихся углов треугольника, не смежных с этим внешним углом

Доказательство:

  • Дан треугольник АВС, где ВСD - внешний угол.
  • \angle BAC + \angle ABC +\angle BCA = 180^0
  • Из равенств угол \angle BCD + \angle BCA = 180^0
  • Получаем \angle BCD = \angle BAC+\angle ABC.

Сумма внутренних углов треугольника равна 180 0 . Это одна из основополагающих аксиом геометрии Эвклида. Именно эту геометрию изучают школьники. Геометрию определяют наукой, изучающей пространственные формы реального мира.

Что побудило древних греков разработать геометрию? Потребность измерять поля, луга - участки земной поверхности. При этом древние греки приняли, что поверхность Земли горизонтальная, плоская. С учетом этого допущения и создавались аксиомы Эвклида, в том числе и о сумме внутренних углов треугольника в 180 0 .

Под аксиомой понимается положение, не требующее доказательства. Как это нужно понимать? Высказывается пожелание, устраивающее человека, и далее оно подтверждается иллюстрациями. Но все, что не доказано - вымысел, то, чего нет в реальности.

Принимая земную поверхность горизонтальной, древние греки автоматически приняли форму Земли плоской, но она другая - сферическая. Горизонтальных плоскостей и прямых линий в природе вообще нет, потому что гравитация искривляет пространство. Прямые линии и горизонтальные плоскости имеются только в мозгу головы человека.

Поэтому, геометрия Эвклида, объясняющая пространственные формы вымышленного мира, является симулякром - копией, не имеющей оригинала.

Одна из аксиом Эвклида гласит, что сумма внутренних углов треугольника равна 180 0 . На самом деле в реальном искривленном пространстве, или на сферической поверхности Земли, сумма внутренних углов треугольника всегда больше 180 0 .

Рассуждаем так. Любой меридиан на глобусе пересекается с экватором под углом 90 0 . Чтобы получить треугольник, нужно от меридиана отодвинуть другой меридиан. Сумма углов треугольника между меридианами и стороной экватора составит 180 0 . Но еще останется угол у полюса. В итоге сумма всех углов и составит больше 180 0 .

Если на полюсе стороны пересекутся под углом 90 0 , то сумма внутренних углов такого треугольника будет 270 0 . Два меридиана, пересекающиеся с экватором под прямым углом в этом треугольнике, будет параллельными друг другу, а на полюсе, пересекающиеся друг с другом под углом 90 0 , станут перпендикулярами. Получается, две параллельные линии на одной плоскости не только пересекаются, но могу на полюсе быть перпендикулярами.

Конечно, стороны такого треугольника будут не прямыми линиями, а выпуклыми, повторяющими сферическую форму земного шара. Но, именно такой реальный мир пространства.

Геометрию реального пространства с учетом его кривизны в середине XIX в. разработал немецкий математик Б. Риман (1820-1866). Но об этом школьникам не говорят.

Итак, эвклидова геометрия, принимающая форму Земли плоской с горизонтальной поверхностью, чего на самом деле нет, представляет собой симулякр. Ноотик - геометрия Римана, учитывающая кривизну пространства. Сумма внутренних углов треугольника в ней больше 180 0 .

Разделы: Математика

Презентация . (Слайд 1)

Тип урока: урок изучения нового материала.

Цели урока:

  • Образовательные :
    • рассмотреть теорему о сумме углов треугольника,
    • показать применение теоремы при решении задач.
  • Воспитательные :
    • воспитание положительного отношения учащихся к знаниям,
    • воспитывать в учащихся средствами урока уверенность в своих силах.
  • Развивающие :
    • развитие аналитического мышления,
    • развитие «умений учиться»: использовать знания, умения и навыки в учебном процессе,
    • развитие логического мышления, способности четко формулировать свои мысли.

Оборудование: интерактивная доска, презентация, карточки.

ХОД УРОКА

I. Организационный момент

– Сегодня на уроке мы вспомним определения прямоугольного, равнобедренного, равностороннего треугольников. Повторим свойства углов треугольников. Применяя свойства внутренних односторонних и внутренних накрест лежащих углов докажем теорему о сумме углов треугольника и научимся применять ее при решении задач.

II. Устно (Слайд 2)

1) Найти на рисунках прямоугольный, равнобедренный, равносторонний треугольники.
2) Дать определение этим треугольникам.
3) Сформулировать свойства углов равностороннего и равнобедренного треугольника.

4) На рисунке KE II NH. (слайд 3)

– Укажите секущие для этих прямых
– Найти внутренние односторонние углы, внутренние накрест лежащие углы, назвать их свойства

III. Объяснение нового материала

Теорема. Сумма углов треугольника равна 180 о

По формулировке теоремы, ребята строят чертеж, записывают условие, заключение. Отвечая на вопросы, самостоятельно доказывают теорему.

Дано:

Доказать:

Доказательство:

1. Через вершину В треугольника проведем прямую BD II AC.
2. Указать секущие для параллельных прямых.
3. Что можно сказать об углах CBD и ACB? (сделать запись)
4. Что мы знаем об углах CAB и ABD? (сделать запись)
5. Заменим угол CBD углом ACB
6. Сделать вывод.

IV. Закончи предложение. (Слайд 4)

1. Сумма углов треугольника равна …
2. В треугольнике один из углов равен, другой, третий угол треугольника равен …
3. Сумма острых углов прямоугольного треугольника равна …
4. Углы равнобедренного прямоугольного треугольника равны …
5. Углы равностороннего треугольника равны...
6. Если угол между боковыми сторонами равнобедренного треугольника равен 1000, то углы при основании равны …

V. Немного истории. (Слайды 5-7)

Доказательство теоремы о сумме углов треугольника «Сумма внутренних
углов треугольника равна двум прямым» приписывают Пифагору (580-500 г.г. до н.э.)

Древнегреческий ученый Прокл (410-485 г.г. н.э.),


Поделиться