Выполнив действия над матрицами найти матрицу к. Матрицы

Заметим, что элементами матрицы могут быть не только числа. Представим себе, что вы описываете книги, которые стоят на вашей книжной полке. Пусть у вас на полке порядок и все книги стоят на строго определенных местах. Таблица , которая будет содержать описание вашей библиотеки (по полкам и следованию книг на полке), тоже будет матрицей. Но такая матрица будет не числовой. Другой пример. Вместо чисел стоят разные функции, объединенные между собой некоторой зависимостью. Полученная таблица также будет называться матрицей. Иными словами, Матрица , это любая прямоугольная таблица , составленная из однородных элементов. Здесь и далее мы будем говорить о матрицах, составленных из чисел.

Вместо круглых скобок для записи матриц применяют квадратные скобки или прямые двойные вертикальные линии


(2.1*)

Определение 2 . Если в выражении (1) m = n , то говорят о квадратной матрице , а если , то о прямоугольной .

В зависимости от значений m и n различают некоторые специальные виды матриц:

Важнейшей характеристикой квадратной матрицы является ее определитель или детерминант , который составляется из элементов матрицы и обозначается

Очевидно, что D E =1 ; .

Определение 3 . Если , то матрица A называется невырожденной или не особенной .

Определение 4 . Если detA = 0 , то матрица A называется вырожденной или особенной .

Определение 5 . Две матрицы A и B называются равными и пишут A = B , если они имеют одинаковые размеры и их соответствующие элементы равны, т.е .

Например, матрицы и равны, т.к. они равны по размеру и каждый элемент одной матрицы равен соответствующему элементу другой матрицы. А вот матрицы и нельзя назвать равными, хотя детерминанты обеих матриц равны, и размеры матриц одинаковые, но не все элементы, стоящие на одних и тех же местах равны. Матрицы и разные, так как имеют разный размер. Первая матрица имеет размер 2х3, а вторая 3х2. Хотя количество элементов одинаковое – 6 и сами элементы одинаковые 1, 2, 3, 4, 5, 6, но они стоят на разных местах в каждой матрице. А вот матрицы и равны, согласно определению 5.

Определение 6 . Если зафиксировать некоторое количество столбцов матрицы A и такое же количество ee строк, тогда элементы, стоящие на пересечении указанных столбцов и строк образуют квадратную матрицу n - го порядка, определитель которой называется минором k – го порядка матрицы A .

Пример . Выписать три минора второго порядка матрицы

Матрицей называется прямоугольная таблица, заполненная некоторыми математическими объектами. По большей части мы будем рассматривать матрицы с элементами из некоторого поля, хотя многие предложения сохраняют силу, если в качестве элементов матриц рассматривать элементы ассоциативного (не обязательно коммутативного) кольца.

Чаще всего элементы матрицы обозначаются одной буквой двумя индексами, указывающими «адрес» элемента - первый йндекс дает номер строки, содержащей элемент, второй - номер столбца. Таким образом, матрица (размеров ) записывается в форме

Матрицы, вставленные из чисел, естественно возникают при рассмотрении систем линейных уравнений

Входные данные для этой задачи - это множество коэффициентов, естественно составляющих матрицу

и совокупность свободных членов, образующих матрицу , умеющую лишь один столбец. Искомым является набор значений неизвестных, который, как оказывается, удобно представлять тоже в виде матрицы состоящей из одного столбца.

Важную роль играют так называемые диагональные матрицы. Под этим названием подразумеваются квадратные матрицы, имеющие все элементы равными нулю, кроме элементов главной диагонали, т. е. элементов в позициях

Диагональная матрица D с диагональными элементами обозначается

Матрица, составленная из элементов, находящихся на пересечениях нескольких выбранных строк матрицы А и нескольких выбранных столбцов, называется субматрицей для матрицы А. Если - номера выбранных строк и - номера выбранных столбцов, то соответствующая субматрица есть

В частности, строки и столбцы матрицы можно рассматривать как ее субматрицы.

Матрицы связаны естественным образом с линейной подстановкой (линейным преобразованием) переменных. Под этим названием понимается переход от исходной системы переменных к другой, новой, связанных по формулам

Линейная подстановка переменных задается посредством матрицы коэффициентов

Среди систем линейных уравнений наибольшее значение имеют системы, в которых число уравнений равно числу неизвестных. Среди линейных подстановок переменных основную роль играют подстановки, в которых число исходных и новых переменных одинаково. В этих ситуациях матрица коэффициентов оказывается квадратной, т. е. имеющей одинаковое число строк и столбцов; это число называется порядком квадратной матрицы.

Вместо того чтобы говорить «матрица, состоящая из одной строки», и «матрица, состоящая из одного столбца», говорят короче: строка, столбец.


Матрицей размерности называется прямоугольная таблица, состоящая изэлементов, расположенных вm строках и n столбцах.

Элементы матрицы (первый индексi − номер строки, второй индекс j − номер столбца) могут быть числами, функциями и т. п. Матрицы обозначают заглавными буквами латинского алфавита.

Матрица называется квадратной , если у нее число строк равно числу столбцов (m = n ). В этом случае число n называется порядком матрицы, а сама матрица называется матрицей n -го порядка.

Элементы с одинаковыми индексами образуютглавную диагональ квадратной матрицы, а элементы (т.е. имеющие сумму индексов, равнуюn +1) − побочную диагональ .

Единичной матрицей называется квадратная матрица, все элементы главной диагонали которой равны 1, а остальные элементы равны 0. Она обозначается буквой Е .

Нулевая матрица − это матрица, все элементы которой равны 0. Нулевая матрица может быть любого размера.

К числу линейных операций над матрицами относятся:

1) сложение матриц;

2) умножение матриц на число.

Операция сложения матриц определена только для матриц одинаковой размерности.

Суммой двух матриц А и В называется матрица С , все элементы которой равны суммам соответствующих элементов матриц А и В :

.

Произведением матрицы А на число k называется матрица В , все элементы которой равны соответствующим элементам данной матрицы А , умноженным на число k :

Операция умножения матриц вводится для матриц, удовлетворяющих условию: число столбцов первой матрицы равно числу строк второй.

Произведением матрицы А размерности на матрицу В размерности называется матрицаС размерности , элементi -ой строки и j -го столбца которой равен сумме произведений элементов i -ой строки матрицы А на соответствующие элементы j -го столбца матрицы В :

Произведение матриц (в отличие от произведения действительных чисел) не подчиняется переместительному закону, т.е. в общем случае А В В А .

1.2. Определители. Свойства определителей

Понятие определителя вводится только для квадратных матриц.

Определителем матрицы 2-го порядка называется число, вычисляемое по следующему правилу

.

Определителем матрицы 3-го порядка называется число, вычисляемое по следующему правилу:

Первое из слагаемых со знаком «+» представляет собой произведение элементов, расположенных на главной диагонали матрицы (). Остальные два содержат элементы, расположенные в вершинах треугольников с основанием, параллельным главной диагонали (и). Со знаком «-» входят произведения элементов побочной диагонали () и элементов, образующих треугольники с основаниями, параллельными этой диагонали (и).

Это правило вычисления определителя 3-го порядка называется правилом треугольников (или правилом Саррюса).

Свойства определителей рассмотрим на примере определителей 3-го порядка.

1. При замене всех строк определителя на столбцы с теми же номерами, что и строки, определитель своего значения не меняет, т.е. строки и столбцы определителя равноправны

.

2. При перестановке двух строк (столбцов) определитель меняет свой знак.

3. Если все элементы некоторой строки (столбца) нули, то определитель равен 0.

4. Общий множитель всех элементов строки (столбца) можно вынести за знак определителя.

5. Определитель, содержащий две одинаковые строки (столбца), равен 0.

6. Определитель, содержащий две пропорциональные строки (столбца), равен нулю.

7. Если каждый элемент некоторого столбца (строки) определителя представляет сумму двух слагаемых, то определитель равен сумме двух определителей, в одном из которых в том же столбце (строке) стоят первые слагаемые, а в другом − вторые. Остальные элементы у обоих определителей одинаковые. Так,

.

8. Определитель не изменится, если к элементам какого-либо его столбца (строки) прибавить соответствующие элементы другого столбца (строки), умноженные на одно и то же число.

Следующее свойство определителя связано с понятиями минора и алгебраического дополнения.

Минором элемента определителя называется определитель, полученный из данного вычеркиванием той строки и того столбца, на пересечении которых этот элемент расположен.

Например, минором элемента определителя называется определитель .

Алгебраическим дополнением элементаопределителя называется его минор, умноженный на, гдеi − номер строки, j − номер столбца, на пересечении которых находится элемент . Алгебраическое дополнение обычно обозначается. Для элементаопределителя 3-го порядка алгебраическое дополнение

9. Определитель равен сумме произведений элементов какой-либо строки (столбца) на соответствующие им алгебраические дополнения.

Например, определитель можно разложить по элементам первой строки

,

или второго столбца

Свойства определителей применяются для их вычисления.

В этой теме будут рассмотрены такие операции, как сложение и вычитание матриц, умножение матрицы на число, умножение матрицы на матрицу, транспонирование матрицы. Все обозначения, которые используются на данной странице, взяты из предыдущей темы .

Сложение и вычитание матриц.

Суммой $A+B$ матриц $A_{m\times n}=(a_{ij})$ и $B_{m\times n}=(b_{ij})$ называется матрица $C_{m\times n}=(c_{ij})$, где $c_{ij}=a_{ij}+b_{ij}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

Аналогичное определение вводят и для разности матриц:

Разностью $A-B$ матриц $A_{m\times n}=(a_{ij})$ и $B_{m\times n}=(b_{ij})$ называется матрица $C_{m\times n}=(c_{ij})$, где $c_{ij}=a_{ij}-b_{ij}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

Пояснение к записи $i=\overline{1,m}$: показать\скрыть

Запись "$i=\overline{1,m}$" означает, что параметр $i$ изменяется от 1 до m. Например, запись $i=\overline{1,5}$ говорит о том, что параметр $i$ принимает значения 1, 2, 3, 4, 5.

Стоит обратить внимание, что операции сложения и вычитания определены только для матриц одинакового размера. Вообще, сложение и вычитание матриц - операции, ясные интуитивно, ибо означают они, по сути, всего лишь суммирование или вычитание соответствующих элементов.

Пример №1

Заданы три матрицы:

$$ A=\left(\begin{array} {ccc} -1 & -2 & 1 \\ 5 & 9 & -8 \end{array} \right)\;\; B=\left(\begin{array} {ccc} 10 & -25 & 98 \\ 3 & 0 & -14 \end{array} \right); \;\; F=\left(\begin{array} {cc} 1 & 0 \\ -5 & 4 \end{array} \right). $$

Можно ли найти матрицу $A+F$? Найти матрицы $C$ и $D$, если $C=A+B$ и $D=A-B$.

Матрица $A$ содержит 2 строки и 3 столбца (иными словами - размер матрицы $A$ равен $2\times 3$), а матрица $F$ содержит 2 строки и 2 столбца. Размеры матрицы $A$ и $F$ не совпадают, поэтому сложить их мы не можем, т.е. операция $A+F$ для данных матриц не определена.

Размеры матриц $A$ и $B$ совпадают, т.е. данные матрицы содержат равное количество строк и столбцов, поэтому к ним применима операция сложения.

$$ C=A+B=\left(\begin{array} {ccc} -1 & -2 & 1 \\ 5 & 9 & -8 \end{array} \right)+ \left(\begin{array} {ccc} 10 & -25 & 98 \\ 3 & 0 & -14 \end{array} \right)=\\= \left(\begin{array} {ccc} -1+10 & -2+(-25) & 1+98 \\ 5+3 & 9+0 & -8+(-14) \end{array} \right)= \left(\begin{array} {ccc} 9 & -27 & 99 \\ 8 & 9 & -22 \end{array} \right) $$

Найдем матрицу $D=A-B$:

$$ D=A-B=\left(\begin{array} {ccc} -1 & -2 & 1 \\ 5 & 9 & -8 \end{array} \right)- \left(\begin{array} {ccc} 10 & -25 & 98 \\ 3 & 0 & -14 \end{array} \right)=\\= \left(\begin{array} {ccc} -1-10 & -2-(-25) & 1-98 \\ 5-3 & 9-0 & -8-(-14) \end{array} \right)= \left(\begin{array} {ccc} -11 & 23 & -97 \\ 2 & 9 & 6 \end{array} \right) $$

Ответ : $C=\left(\begin{array} {ccc} 9 & -27 & 99 \\ 8 & 9 & -22 \end{array} \right)$, $D=\left(\begin{array} {ccc} -11 & 23 & -97 \\ 2 & 9 & 6 \end{array} \right)$.

Умножение матрицы на число.

Произведением матрицы $A_{m\times n}=(a_{ij})$ на число $\alpha$ называется матрица $B_{m\times n}=(b_{ij})$, где $b_{ij}=\alpha\cdot a_{ij}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

Попросту говоря, умножить матрицу на некое число - означает умножить каждый элемент заданной матрицы на это число.

Пример №2

Задана матрица: $ A=\left(\begin{array} {ccc} -1 & -2 & 7 \\ 4 & 9 & 0 \end{array} \right)$. Найти матрицы $3\cdot A$, $-5\cdot A$ и $-A$.

$$ 3\cdot A=3\cdot \left(\begin{array} {ccc} -1 & -2 & 7 \\ 4 & 9 & 0 \end{array} \right) =\left(\begin{array} {ccc} 3\cdot(-1) & 3\cdot(-2) & 3\cdot 7 \\ 3\cdot 4 & 3\cdot 9 & 3\cdot 0 \end{array} \right)= \left(\begin{array} {ccc} -3 & -6 & 21 \\ 12& 27 & 0 \end{array} \right).\\ -5\cdot A=-5\cdot \left(\begin{array} {ccc} -1 & -2 & 7 \\ 4 & 9 & 0 \end{array} \right) =\left(\begin{array} {ccc} -5\cdot(-1) & -5\cdot(-2) & -5\cdot 7 \\ -5\cdot 4 & -5\cdot 9 & -5\cdot 0 \end{array} \right)= \left(\begin{array} {ccc} 5 & 10 & -35 \\ -20 & -45 & 0 \end{array} \right). $$

Запись $-A$ есть сокращенная запись для $-1\cdot A$. Т.е., чтобы найти $-A$ нужно все элементы матрицы $A$ умножить на (-1). По сути, это означает, что знак всех элементов матрицы $A$ изменится на противоположный:

$$ -A=-1\cdot A=-1\cdot \left(\begin{array} {ccc} -1 & -2 & 7 \\ 4 & 9 & 0 \end{array} \right)= \left(\begin{array} {ccc} 1 & 2 & -7 \\ -4 & -9 & 0 \end{array} \right) $$

Ответ : $3\cdot A=\left(\begin{array} {ccc} -3 & -6 & 21 \\ 12& 27 & 0 \end{array} \right);\; -5\cdot A=\left(\begin{array} {ccc} 5 & 10 & -35 \\ -20 & -45 & 0 \end{array} \right);\; -A=\left(\begin{array} {ccc} 1 & 2 & -7 \\ -4 & -9 & 0 \end{array} \right)$.

Произведение двух матриц.

Определение этой операции громоздко и, на первый взгляд, непонятно. Поэтому сначала укажу общее определение, а потом подробно разберем, что оно означает и как с ним работать.

Произведением матрицы $A_{m\times n}=(a_{ij})$ на матрицу $B_{n\times k}=(b_{ij})$ называется матрица $C_{m\times k}=(c_{ij})$, для которой каждый элемент $c_{ij}$ равен сумме произведений соответствующих элементов i-й строки матрицы $A$ на элементы j-го столбца матрицы $B$: $$c_{ij}=\sum\limits_{p=1}^{n}a_{ip}b_{pj}, \;\; i=\overline{1,m}, j=\overline{1,n}.$$

Пошагово умножение матриц разберем на примере. Однако сразу стоит обратить внимание, что перемножать можно не все матрицы. Если мы хотим умножить матрицу $A$ на матрицу $B$, то сперва нужно убедиться, что количество столбцов матрицы $A$ равно количеству строк матрицы $B$ (такие матрицы часто называют согласованными ). Например, матрицу $A_{5\times 4}$ (матрица содержит 5 строк и 4 столбца), нельзя умножать на матрицу $F_{9\times 8}$ (9 строк и 8 столбцов), так как количество столбцов матрицы $A$ не равно количеству строк матрицы $F$, т.е. $4\neq 9$. А вот умножить матрицу $A_{5\times 4}$ на матрицу $B_{4\times 9}$ можно, так как количество столбцов матрицы $A$ равно количеству строк матрицы $B$. При этом результатом умножения матриц $A_{5\times 4}$ и $B_{4\times 9}$ будет матрица $C_{5\times 9}$, содержащая 5 строк и 9 столбцов:

Пример №3

Заданы матрицы: $ A=\left(\begin{array} {cccc} -1 & 2 & -3 & 0 \\ 5 & 4 & -2 & 1 \\ -8 & 11 & -10 & -5 \end{array} \right)$ и $ B=\left(\begin{array} {cc} -9 & 3 \\ 6 & 20 \\ 7 & 0 \\ 12 & -4 \end{array} \right)$. Найти матрицу $C=A\cdot B$.

Для начала сразу определим размер матрицы $C$. Так как матрица $A$ имеет размер $3\times 4$, а матрица $B$ имеет размер $4\times 2$, то размер матрицы $C$ таков: $3\times 2$:

Итак, в результате произведения матриц $A$ и $B$ мы должны получить матрицу $C$, состоящую из трёх строк и двух столбцов: $ C=\left(\begin{array} {cc} c_{11} & c_{12} \\ c_{21} & c_{22} \\ c_{31} & c_{32} \end{array} \right)$. Если обозначения элементов вызывают вопросы, то можно глянуть предыдущую тему: "Матрицы. Виды матриц. Основные термины" , в начале которой поясняется обозначение элементов матрицы. Наша цель: найти значения всех элементов матрицы $C$.

Начнем с элемента $c_{11}$. Чтобы получить элемент $c_{11}$ нужно найти сумму произведений элементов первой строки матрицы $A$ и первого столбца матрицы $B$:

Чтобы найти сам элемент $c_{11}$ нужно перемножить элементы первой строки матрицы $A$ на соответствующие элементы первого столбца матрицы $B$, т.е. первый элемент на первый, второй на второй, третий на третий, четвертый на четвертый. Полученные результаты суммируем:

$$ c_{11}=-1\cdot (-9)+2\cdot 6+(-3)\cdot 7 + 0\cdot 12=0. $$

Продолжим решение и найдем $c_{12}$. Для этого придётся перемножить элементы первой строки матрицы $A$ и второго столбца матрицы $B$:

Аналогично предыдущему, имеем:

$$ c_{12}=-1\cdot 3+2\cdot 20+(-3)\cdot 0 + 0\cdot (-4)=37. $$

Все элементы первой строки матрицы $C$ найдены. Переходим ко второй строке, которую начинает элемент $c_{21}$. Чтобы его найти придётся перемножить элементы второй строки матрицы $A$ и первого столбца матрицы $B$:

$$ c_{21}=5\cdot (-9)+4\cdot 6+(-2)\cdot 7 + 1\cdot 12=-23. $$

Следующий элемент $c_{22}$ находим, перемножая элементы второй строки матрицы $A$ на соответствующие элементы второго столбца матрицы $B$:

$$ c_{22}=5\cdot 3+4\cdot 20+(-2)\cdot 0 + 1\cdot (-4)=91. $$

Чтобы найти $c_{31}$ перемножим элементы третьей строки матрицы $A$ на элементы первого столбца матрицы $B$:

$$ c_{31}=-8\cdot (-9)+11\cdot 6+(-10)\cdot 7 + (-5)\cdot 12=8. $$

И, наконец, для нахождения элемента $c_{32}$ придется перемножить элементы третьей строки матрицы $A$ на соответствующие элементы второго столбца матрицы $B$:

$$ c_{32}=-8\cdot 3+11\cdot 20+(-10)\cdot 0 + (-5)\cdot (-4)=216. $$

Все элементы матрицы $C$ найдены, осталось лишь записать, что $C=\left(\begin{array} {cc} 0 & 37 \\ -23 & 91 \\ 8 & 216 \end{array} \right)$. Или, если уж писать полностью:

$$ C=A\cdot B =\left(\begin{array} {cccc} -1 & 2 & -3 & 0 \\ 5 & 4 & -2 & 1 \\ -8 & 11 & -10 & -5 \end{array} \right)\cdot \left(\begin{array} {cc} -9 & 3 \\ 6 & 20 \\ 7 & 0 \\ 12 & -4 \end{array} \right)=\left(\begin{array} {cc} 0 & 37 \\ -23 & 91 \\ 8 & 216 \end{array} \right). $$

Ответ : $C=\left(\begin{array} {cc} 0 & 37 \\ -23 & 91 \\ 8 & 216 \end{array} \right)$.

Кстати сказать, зачастую нет резона расписывать подробно нахождение каждого элемента матрицы-результата. Для матриц, размер которых невелик, можно поступать и так:

$$ \left(\begin{array} {cc} 6 & 3 \\ -17 & -2 \end{array}\right)\cdot \left(\begin{array} {cc} 4 & 9 \\ -6 & 90 \end{array} \right) =\left(\begin{array} {cc} 6\cdot{4}+3\cdot(-6) & 6\cdot{9}+3\cdot{90} \\ -17\cdot{4}+(-2)\cdot(-6) & -17\cdot{9}+(-2)\cdot{90} \end{array} \right) =\left(\begin{array} {cc} 6 & 324 \\ -56 & -333 \end{array} \right) $$

Стоит также обратить внимание, что умножение матриц некоммутативно. Это означает, что в общем случае $A\cdot B\neq B\cdot A$. Лишь для некоторых типов матриц, которые именуют перестановочными (или коммутирующими), верно равенство $A\cdot B=B\cdot A$. Именно исходя из некоммутативности умножения, требуется указывать как именно мы домножаем выражение на ту или иную матрицу: справа или слева. Например, фраза "домножим обе части равенства $3E-F=Y$ на матрицу $A$ справа" означает, что требуется получить такое равенство: $(3E-F)\cdot A=Y\cdot A$.

Транспонированной по отношению к матрице $A_{m\times n}=(a_{ij})$ называется матрица $A_{n\times m}^{T}=(a_{ij}^{T})$, для элементов которой $a_{ij}^{T}=a_{ji}$.

Попросту говоря, для того, чтобы получить транспонированную матрицу $A^T$, нужно в исходной матрице $A$ заменить столбцы соответствующими строками по такому принципу: была первая строка - станет первый столбец; была вторая строка - станет второй столбец; была третья строка - станет третий столбец и так далее. Например, найдем транспонированную матрицу к матрице $A_{3\times 5}$:

Соответственно, если исходная матрица имела размер $3\times 5$, то транспонированная матрица имеет размер $5\times 3$.

Некоторые свойства операций над матрицами.

Здесь предполагается, что $\alpha$, $\beta$ - некоторые числа, а $A$, $B$, $C$ - матрицы. Для первых четырех свойств я указал названия, остальные можно назвать по аналогии с первыми четырьмя.



Поделиться