Хром — общая характеристика элемента, химические свойства хрома и его соединений. Физические свойства и механические характеристики металла хром и его соединений Хром краткое описание

За счет того, что обладает превосходными антикоррозийными свойствами. Хромирование защищает любой другой сплав от ржавчины. Кроме того, легирование сталей хромом придает им такую же стойкость к коррозии, которая свойственна и самому металлу.

Итак, давайте обсудим сегодня, каковы технические и окислительные характеристики материала хром, основные амфотерные, восстановительные свойства и получение металла также будут затронуты. А еще мы узнаем, каково влияние хрома на свойства стали.

Хром – металл 4 периода 6 группы побочной подгруппы. Атомный номер 24, атомная масса – 51, 996. Это твердый металл серебристо-голубоватого цвета. В чистом виде отличается ковкостью и вязкостью, но малейшие примеси азота или углерода придают ему хрупкость и твердость.

Хром часто относят к черным металлам за счет цвета его основного минерала – хромистого железняка. А вот свое название – от греческого «цвет», «краска», он получил благодаря своим соединениям: соли и оксиды металла с разной степенью окисления окрашены во все цвета радуги.

  • В нормальных условиях хром инертен и не взаимодействует с кислородом, азотом или водой.
  • На воздухе он сразу же пассивируется – покрывается тонкой оксидной пленкой, которая полностью перекрывает кислороду доступ к металлу. По той же причине вещество не взаимодействует с серной и азотной кислотой.
  • При нагревании металл становится активным и вступает в реакции с водой, кислородом, кислотами и щелочами.

Для него характерна объемно-центрированная кубическая решетка. Фазовые переходы отсутствуют. При температуре в 1830 С возможен переход к гранецентрированной решетке.

Однако у хрома есть одна интересная аномалия. При температуре в 37 С некоторые физические свойства металла резко меняются: изменяется электросопротивление, коэффициент линейного расширения, падает до минимума модуль упругости и повышается внутреннее трение. Связано это с прохождением точки Нееля: при этой температуре вещество меняет свои антиферромагнитные свойства на парамагнитные, что представляет собой переход первого уровня и означает резкое увеличение объема.

Химические свойства хрома и его соединений описаны в этом видео:

Химические и физические свойства хрома

Температура плавления и кипения

Физические характеристики металла зависят от примесей до такой степени, что сложным оказалось установить даже температуру плавления.

  • Согласно современным измерениям температура плавления считается величина в 1907 С. Металл относится к тугоплавким веществам.
  • Температура кипения равна 2671 С.

Ниже будет дана общая характеристика физических и магнитных свойств металла хром.

Общие свойства и характеристики хрома

Физические особенности

Хром относится к наиболее устойчивым из всех тугоплавких металлов.

  • Плотность в нормальных условиях составляет 7200 кг/куб. м, это меньше чем у .
  • Твердость по шкале Мооса составляет 5, по шкале Бринелля 7–9 Мн/м 2 . Хром является самым твердым металлом из известных, уступает только урану, иридию, вольфраму и бериллию.
  • Модуль упругости при 20 С составляет 294 ГПа. Это довольно умеренный показатель.

Благодаря строению – объемно-центрированная решетка, хром обладает такой характеристикой, как температура хрупко-вязкого периода. Вот только когда речь идет об этом металле, эта величина оказывается сильно зависящей от степени чистоты и колеблется от -50 до +350 С. На практике раскристаллизированный хром никакой пластичностью не обладает, но после мягкого отжига и формовки становится ковким.

Прочность металла также растет при холодной обработке. Легирующие добавки тоже заметно усиливают это качество.

Теплофизические характеристики

Как правило, тугоплавкие металлы имеют высокий уровень теплопроводности и, соответственно, низкий коэффициент теплового расширения. Однако хром заметно отличается по своим качествам.

В точке Нееля коэффициент теплового расширения совершает резкий скачок, а затем с увеличением температуры продолжает заметно расти. При 29 С (до скачка) величина коэффициента составляет 6.2 · 10-6 м/(м K).

Теплопроводность подчиняется этой же закономерности: в точке Нееля она падает, хотя и не столь резко и уменьшается с возрастанием температуры.

  • В нормальных условиях теплопроводность вещества равна 93.7 Вт/(м K).
  • Удельная теплоемкость в тех же условиях – 0.45 Дж/(г K).

Электрические свойства

Несмотря на нетипичное «поведение» теплопроводности хром является одним из лучших проводников тока, уступая по этому параметру только серебру, и золоту.

  • При нормальной температуре электропроводность металла составит 7.9 · 106 1/(Ом м).
  • Удельное электрическое сопротивление – 0.127 (Ом мм2)/м.

До точки Нееля – 38 С, вещество является антиферромагнетиком, то есть, под действием магнитного поля и при его отсутствии никаких магнитных свойств не проявляется. Выше 38 С хром становится парамагнетиком: проявляет магнитные свойства под действием внешнего магнитного поля.

Токсичность

В природе хром встречается только в связанном виде, поэтому попадание чистого хрома в организм человека исключено. Однако известно, что металлическая пыль раздражает ткани легких, через кожу не усваивается. Сам металл не токсичен, но о его соединениях этого сказать нельзя.

  • Трехвалентный хром оказывается в окружающей среде при и ее переработке. Однако в организм человека может попасть и в составе пищевой добавки – пиколината хрома, используемой в программах по уменьшению веса. Как микроэлемент трехвалентный металл участвует в синтезе глюкозы и необходим. Избыток его, судя по исследованиям, определенной опасности не представляет, поскольку не всасывается стенками кишечника. Однако в организме он может накапливаться.
  • Соединения шестивалентного хрома токсичны более чем в 100–1000 раз. Попасть в организм он может при производстве хроматов, при хромировании предметов, при некоторых сварочных работах. Соединения шестивалентного элемента являются сильными окислителями. Попадая в ЖКТ, они вызывают кровотечение желудка и кишечника, возможно с прободением кишечника. Через кожу вещества почти не всасываются, но оказывают сильное разъедающее действие – возможны ожоги, воспаления, появление язв.

Хром – обязательный легирующий элемент при получении нержавеющих и жаропрочных . Его способность противостоять коррозии и передавать это качество сплавам остается самым востребованным качеством металла.

Химические свойства соединений хрома и его окислительно-восстановительные свойства рассмотрены в этом видео:

Хром (Cr) — элемент с атомным номером 24 и атомной массой 51,996 побочной подгруппы шестой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева. Хром — твёрдый металл голубовато-белого цвета. Обладает высокой химической стойкостью. При комнатной температуре Cr стоек к воде и к воздуху. Этот элемент является одним из важнейших металлов, используемых в промышленном легировании сталей. Соединения хрома имеют яркую окраску различных цветов, за что, собственно, он и получил свое название. Ведь в переводе с греческого «хром» означает «краска».

Известно 24 изотопа хрома с 42Cr по 66Cr. Стабильные природные изотопы 50Cr (4,31 %), 52Cr (87,76 %), 53Cr (9,55 %) и 54Cr (2,38 %). Из шести искусственных радиоактивных изотопов наиболее важен 51Cr с периодом полураспада 27,8 суток. Он применяется, как изотопный индикатор.

В отличие от металлов древности (золото, серебро, медь, железо, олово и свинец) хром имеет своего «первооткрывателя». В 1766 году в окрестностях Екатеринбурга был найден минерал, который получил название «сибирский красный свинец» — PbCrO4. В 1797 году Л. Н. Вокленом в минерале крокоите — природном хромате свинца, был обнаружен элемент № 24. Примерно в то же время (1798 год) независимо от Воклена хром был открыт немецкими учеными М. Г. Клапротом и Ловицем в образце тяжелого черного минерала (это был хромит FeCr2O4), найденного на Урале. Позднее в 1799 Ф. Тассерт обнаружил новый металл в том же минерале, найденном на юго-востоке Франции. Считается, что именно Тассерту впервые удалось получить относительно чистый металлический хром.

Металлический хром используют для хромирования, а также в качестве одного из важнейших компонентов легированных сталей (в частности нержавеющих). Кроме того, хром нашел применение в ряде других сплавов (кислотоупорных и жаропрочных сталях). Ведь введение этого металла в сталь повышает ее устойчивость против коррозии как в водных средах при обычных температурах, так и в газах при повышенных температурах. Хромистым сталям присуща повышенная твердость. Хром применяют в термохромировании — процесс, при котором защитное действие Cr обусловлено образованием на поверхности стали тонкой, но прочной оксидной пленки, препятствующей взаимодействию металла с окружающей средой.

Широкое применение нашли и соединения хрома, так хромиты успешно используются в огнеупорной промышленности: магнезитохромитовым кирпичом футеруют мартеновские печи и другое металлургическое оборудование.

Хром - один из биогенных элементов, которые постоянно входят в состав тканей растений и животных. Растения содержат хром в листьях, где он присутствует в виде низкомолекулярного комплекса, не связанного с субклеточными структурами. До сих пор ученые не смогли доказать необходимость этого элемента для растений. Однако у животных Cr участвует в обмене липидов, белков (входит в состав фермента трипсина), углеводов (структурный компонент глюкозоустойчивого фактора). Известно, что в биохимических процессах участвует исключительно трехвалентный хром. Как и большинство других важных биогенных элементов, хром проникает в организм животного или человека посредством пищи. Понижение этого микроэлемента в организме приводит к замедлению роста, резкому увеличению уровня холестерина в крови и снижению чувствительности периферийных тканей к инсулину.

В тоже время в чистом виде хром весьма токсичен — металлическая пыль Cr раздражает ткани легких, соединения хрома (III) вызывают дерматиты. Соединения хрома (VI) приводят к разным заболеваниям человека, в том числе и онкологическим.

Биологические свойства

Хром - важный биогенный элемент, непременно входящий в состав тканей растений, животных и человека. Среднее содержание этого элемента в растениях – 0,0005 %, причем практически весь он накапливается в корнях (92-95 %), остальная доля содержится в листьях. Высшие растения не переносят концентрации этого металла выше 3∙10-4 моль/л. У животных содержание хрома составляет от десятитысячных до десятимиллионных долей процента. Зато в планктоне коэффициент накопления хрома поразителен — 10 000-26 000. Во взрослом человеческом организме содержание Cr колеблется от 6 до 12 мг. Причем достаточно точно физиологическая потребность в хроме для человека не установлена. Она во многом зависит от рациона – при употреблении пищи с высоким содержанием сахара, потребность организма в хроме возрастает. Принято считать, что человеку требуется в сутки примерно 20–300 мкг этого элемента. Как и другие биогенные элементы, хром способен накапливаться в тканях организма, особенно в волосах. Именно в них содержание хрома указывает на степень обеспеченности организма этим металлом. К сожалению, с возрастом «запасы» хрома в тканях истощаются, исключением являются легкие.

Хром участвует в обмене липидов, белков (присутствует в составе фермента трипсина), углеводов (является структурным компонентом глюкозоустойчивого фактора). Этот фактор обеспечивает взаимодействие клеточных рецепторов с инсулином, уменьшая, тем самым, потребность в нем организма. Фактора толерантности к глюкозе (GTF) усиливает действие инсулина во всех метаболических процессах с его участием. Кроме того, хром принимает участие в регуляции обмена холестерина и является активатором некоторых ферментов.

Основной источник поступления хрома в организм животных и человека - пища. Ученые установили, что в растительной пище концентрация хрома значительно ниже, чем в животной. Наиболее богаты хромом пивные дрожжи, мясо, печень, бобовые и цельное необработанное зерно. Снижение содержания этого металла в пище и крови приводит к уменьшению скорости роста, увеличению холестерина в крови, снижению чувствительности периферийных тканей к инсулину (диабетоподобное состояние). Кроме того, возрастает риск развития атеросклероза и нарушения высшей нервной деятельности.

Однако уже при концентрациях в доли миллиграмма на кубический метр в атмосфере все соединения хрома оказывают токсическое действие на организм. Отравления хромом и его соединениями часты при их производстве, в машиностроении, металлургии, в текстильной промышленности. Степень ядовитости хрома зависит от химической структуры его соединений - дихроматы токсичнее хроматов, соединения Cr+6 токсичнее соединений Cr+2 и Cr+3. Признаки отравления проявляются ощущением сухости и болью в носовой полости, острым першением в горле, затруднением дыхания, кашлем и подобными признаками. При небольшом избытке паров или пыли хрома признаки отравления проходят вскоре после прекращения работы в цеху. При длительном постоянном контакте с соединениями хрома появляются признаки хронического отравления - слабость, постоянные головные боли, потеря в весе, диспепсия. Начинаются нарушения в работе желудочно-кишечного тракта, поджелудочной железы, печени. Развиваются бронхит, бронхиальная астма, пневмосклероз. Появляются кожные заболевания - дерматиты, экземы. Кроме того, соединения хрома - опасные канцерогены, способные накапливаться в тканях организма, вызывая раковые заболевания.

Профилактикой отравлений являются периодические медицинские осмотры персонала, работающего с хромом и его соединениями; установка вентиляции, средств пылеподавления и пылеулавливания; использование рабочими средств индивидуальной защиты (респираторы, перчатки).

Корень «хром» в своем понятии «цвет», «краска» входит в состав многих слов, используемых в самых разнообразных областях: науке, технике и даже музыке. Так многие названия фотопленок содержат этот корень: «ортохром», «панхром», «изопанхром» и другие. Слово «хромосома» состоит из двух греческих слов: «хромо» и «сома». Дословно это можно перевести, как «окрашенное тело» или «тело, которое окрашивается». Структурный элемент хромосомы, формирующийся в интерфазе ядра клетки в результате удвоения хромосом, называется «хроматида». «Хроматин» - вещество хромасом, находящееся в ядрах растительных и животных клеток, которое интенсивно окрашивается ядерными красителями. «Хроматофоры» - пигментные клетки у животных и человека. В музыке используется понятие «хроматическая гамма». «Хромка» - один из видов русской гармони. В оптике существуют понятия «хроматическая абберация» и «хроматическая поляризация». «Хроматография» - физико-химический метод разделения и анализа смесей. «Хромоскоп» - прибор для получения цветного изображения путем оптического совмещения двух или трех цветоотделенных фотографических изображений, освещаемых через специально подобранные различно окрашенные светофильтры.

Наиболее ядовитым является оксид хрома (VI) CrO3, он относится к I классу опасности. Смертельная доза для человека (перорально) 0,6 г. Этиловый спирт при соприкосновении со свежеприготовленным CrO3 воспламеняется!

Самая распространенная марка нержавеющей стали содержит 18 % Cr, 8 % Ni, около 0,1 % C. Она великолепно противостоит коррозии и окислению, сохраняют прочность при высоких температурах. Именно из такой стали изготовлены листы, использовавшиеся в строительстве скульптурной группы В.И. Мухиной «Рабочий и колхозница».

Феррохром, используемый в металлургической промышленности при производстве хромистых сталей, в конце IXX века был очень низкого качества. Это связано с низким содержанием в нем хрома — всего 7-8 %. Тогда он именовался «тасманским чугуном» в виду того, что исходная железо-хромовая руда ввозилась из Тасмании.

Ранее упоминалось, что хромовые квасцы используются при дублении кож. Благодаря этому появилось понятие «хромовые» сапоги. Кожа, дубленая соединениями хрома приобретает блеск, лоск и прочность.

Во многих лабораториях используют «хромовую смесь» - смесь насыщенного раствора бихромата калия с концентрированной серной кислотой. Она используется в обезжиривании поверхностей стеклянной и стальной лабораторной посуды. Она окисляет жир и удаляет его остатки. Только обращаться с этой смесью необходимо с осторожностью, ведь это смесь сильной кислоты и сильного окислителя!

В наше время древесина по-прежнему используется, как строительный материал, ведь она недорога и проста в обработке. Но у нее много и отрицательных свойств - подверженность пожарам, грибковым заболеваниям, разрушающим ее. Чтобы избежать всех этих неприятностей дерево пропитывают специальными составами, содержащими хроматы и бихроматы плюс хлорид цинка, сульфат меди, арсенат натрия и некоторые другие вещества. Благодаря таким составам древесина увеличивает свою стойкость к грибкам и бактериям, а также к открытому огню.

Особую нишу хром занял в полиграфии. В 1839 году было установлено, что бумага, пропитанная бихроматом натрия, после освещения ярким светом становится вдруг коричневой. Затем выяснилось, что бихроматные покрытия на бумаге после засвечивания не растворяются в воде, а, будучи смоченными, приобретают синеватый оттенок. Этим свойством воспользовались полиграфисты. Нужный рисунок фотографировали на пластинку с коллоидным покрытием, содержащим бихромат. Засвеченные места при промывке не растворялись, а не засвеченные растворялись, и на пластине оставался рисунок, с которого можно было печатать.

История

История открытия элемента № 24 началась в 1761 году, когда в Березовском руднике (восточное подножье Уральских гор) близ Екатеринбурга был найден необычный красный минерал, который при растирании в пыль давал желтую окраску. Находка принадлежала профессору Петербургского университета Иоганну Готтлобу Леману. Спустя пять лет ученый доставил образцы в город Санкт-Петербург, где провел над ними ряд опытов. В частности он обработал необычные кристаллы соляной кислотой, получив при этом белый осадок, в котором обнаружился свинец. Исходя из полученных результатов, Леман назвал минерал сибирским красным свинцом. Такова история обнаружения крокоита (от греческого «krokos» — шафран) - природного хромата свинца PbCrO4.

Заинтересованный данной находкой Петер Симон Паллас - немецкий естествоиспытатель и путешественник организовал и возглавил экспедицию Петербургской Академии наук в сердце России. В 1770 году экспедиция достигла Урала и посетила Березовский рудник, где были взяты образцы изучаемого минерала. Вот как это описывает сам путешественник: «Этот удивительный красный свинцовый минерал не встречается более ни в одном месторождении. При растирании в порошок становится желтым, и может быть использован в художественной миниатюре». Немецкая предприимчивость преодолела все трудности добычи и доставки крокоита в Европу. Несмотря на то, что эти операции занимали не менее двух лет, вскоре экипажи знатных господ Парижа и Лондона ездили раскрашенные мелко истолченным крокоитом. Коллекции минералогических музеев многих университетов старого света обогатились лучшими образцами этого минерала из русских недр. Однако состав загадочного минерала европейские ученые разгадать никак не могли.

Длилось это на протяжении тридцати лет, пока образец сибирского красного свинца не попал в руки профессору химии Парижской минералогической школы Никола Луи Воклену в 1796 году. Проведя анализ крокоита, ученый не обнаружил в нем ничего кроме оксидов железа, свинца и алюминия. В дальнейшем Воклен обработал крокоит раствором поташа (К2CO3) и вслед за осаждением белого осадка карбоната свинца выделил желтый раствор неизвестной соли. Проведя ряд опытов по обработке минерала солями различных металлов, профессор при помощи соляной кислоты выделил раствор «кислоты красного свинца» - окись хрома и воду (хромовая кислота существует только в разбавленных растворах). Выпарив данный раствор, он получил рубиново-красные кристаллы (хромовый ангидрид). Дальнейший нагрев кристаллов в графитовом тигле в присутствии угля дал множество сросшихся серых игольчатых кристаллов - новый до этого времени неизвестный металл. Очередной ряд опытов показал высокую тугоплавкость полученного элемента и его устойчивость к кислотам. Парижская академия наук незамедлительно засвидетельствовала открытие, ученый по настоянию друзей дал имя новому элементу - хром (от греческого «цвет», «окраска») ввиду разнообразия оттенков образуемых им соединений. В дальнейших своих работах Воклен уверенно заявил, что изумрудная окраска некоторых драгоценных камней, а также природных силикатов бериллия и алюминия объясняется примесью в них соединений хрома. Примером может послужить смарагд, который является окрашенным в зеленый цвет берилл, в котором алюминий частично замещен хромом.

Понятно, что Воклен получил не чистый металл, скорее всего его карбиды, что подтверждается игольчатой формой светло-серых кристаллов. Чистый металлический хром позднее был получен Ф. Тассертом, предположительно в 1800 году.

Также, независимо от Воклена, хром обнаружили Клапрот и Ловиц в 1798 году.

Нахождение в природе

В земных недрах хром — довольно распространенный элемент, несмотря на то, что в свободном виде он не встречается. Его кларк (среднее содержание в земной коре) составляет 8,3.10-3 % или 83 г/т. Однако его распределение по породам неравномерно. Этот элемент в основном характерен для мантии Земли, дело в том, что ультраосновные породы (перидотиты), которые, предположительно близки по составу к мантии нашей планеты, наиболее богаты хромом: 2 10-1 % или 2 кг/т. В таких породах Cr образует массивные и вкрапленные руды, с ними связано образование крупнейших месторождений данного элемента. Высоко содержание хрома и в основных породах (базальтах и др.) 2 10-2 % или 200 г/т. Гораздо меньше Cr в кислых породах: 2,5 10-3 %, осадочных (песчаники) - 3,5 10-3 %, глинистые сланцы также содержат хром - 9 10-3 %.

Можно заключить, что хром является типичным литофильным элементом и почти весь заключен в минералах глубокого залегания в недрах Земли.

Различают три основных минерала хрома: магнохромит (Mn, Fe)Cr2O4, хромпикотит (Mg, Fe)(Cr, Al)2O4 и алюмохромит (Fe, Mg)(Cr, Al)2O4. Эти минералы имеют единое название - хромовая шпинель и общую формулу (Mg, Fe)О (Сr, Al, Fе)2O3. По внешнему виду они неразличимы и их неточно называют «хромиты». Состав их изменчив. Содержание важнейших компонентов колеблется (весовые %): Cr2O3 от 10,5 до 62,0; Al2O3 от 4 до 34,0; Fe2O3 от 1,0 до 18,0; FeO от 7,0 до 24,0; MgO от 10,5 до 33,0; SiO2 от 0,4 до 27,0; примеси TiO2 до 2; V2O5 до 0,2; ZnO до 5; MnO до 1. В некоторых хромовых рудах содержится 0,1-0,2 г\т элементов группы платины и до 0,2 г\т золота.

Помимо различных хромитов, хром входит в состав ряда других минералов - хромвезувиана, хромового хлорита, хромтурмалина, хромовой слюды (фуксита), хромового граната (уваровита) и др., которые нередко сопровождают руды, но сами промышленного значения не имеют. Хром - относительно слабый водный мигрант. В экзогенных условиях хром, как и железо, мигрирует в виде взвесей и может осаждаться в глинах. Наиболее подвижной формой являются хроматы.

Практическое значение имеет, пожалуй, только хромит FeCr2O4, относящийся к шпинелям - изоморфным минералам кубической системы с общей формулой МО Ме2О3, где М - ион двухвалентного металла, а Ме - ион трехвалентного металла. Помимо шпинелидов, хром встречается во многих значительно менее распространенных минералах, например, меланохроите 3PbO 2Cr2O3, вокелените 2(Pb,Cu)CrO4(Pb,Cu)3(PO4)2, тарапакаите K2CrO4, дитцеите CaIO3 CaCrO4 и других.

Хромиты обычно встречаются в виде зернистых масс черного цвета, реже - в виде октаэдрических кристаллов, имеют металлический блеск, залегают в виде сплошных массивов.

На конец XX века запасы хрома (выявленные) в почти полусотне стран мира, имеющих залежи этого металла, составляли 1674 млн. т. Лидирующую позицию занимает Южно Африканская Республика – 1050 млн. т, где основной вклад вносит Бушвелдский комплекс (около 1000 млн. т). Второе место по хромовым ресурсам принадлежит Казахстану, где в Актюбинской области (Кемпирсайский массив) добывают руду очень высокого качества. Другие страны также имеют запасы этого элемента. Турция (в Гулемане), Филлипины на острове Лусон, Финляндия (Кеми), Индия (Сукинда) и др.

Наша страна имеет свои разрабатываемые месторождения хрома – на Урале (Донское, Сарановское, Халиловское, Алапаевское и многие другие). Причем в начале XIX века именно уральские месторождения являлись основными источниками хромовых руд. Лишь в 1827 американец Исаак Тисон обнаружил крупное месторождение хромовой руды на границе Мериленда и Пенсильвании, перехватив монополию добычи на многие годы. В 1848 залежи хромита высокого качества были найдены в Турции, неподалеку от Бурсы, причем вскоре (после истощения Пенсильванского месторождения) именно эта страна перехватила роль монополиста. Это продолжалось до 1906 года, пока не были обнаружены богатые залежи хромитов в ЮАР и Индии.

Применение

Общий объем потребления чистого металлического хрома на сегодняшний день составляет примерно 15 миллионов тонн. На долю производства электролитического хрома — самого чистого - приходится 5 миллионов тонн, что составляет третью часть от общего потребления.

Хром широко используется для легирования сталей и сплавов, придавая им корозионостойкость и жаростойкость. На изготовление таких «суперсплавов» расходуется более 40 % получаемого чистого металла. Наиболее известны сплавы сопротивления - нихромы с содержанием Cr 15-20 %, жаропрочные сплавы - 13-60 % Cr, нержавеющие - 18 % Cr и шарикоподшипниковые стали 1 % Cr. Добавка хрома к обычным сталям улучшает их физические свойства и делает металл более восприимчивым к термической обработке.

Металлический хром используется для хромирования - нанесения на поверхность стальных сплавов тонкого слоя хрома с целью повышения коррозионной стойкости этих сплавов. Хромированное покрытие отлично противостоит воздействию влажного атмосферного воздуха, соленого морского воздуха, воды, азотной и большинства органических кислот. Такие покрытия бывают двух назначений: защитные и декоративные. Толщина защитных покрытий составляет порядка 0,1 мм, они наносятся непосредственно на изделие и придают ему повышенную износостойкость. Декоративные покрытия имеют эстетическое значение, наносятся на слой другого металла (меди или никеля), который собственно выполняет защитную функцию. Толщина такого покрытия всего 0,0002–0,0005 мм.

Соединения хрома также активно используются в различных областях.

Основная хромовая руда - хромит FeCr2O4 используется в производстве огнеупоров. Магнезитохромитовые кирпичи химически пассивны и термостойки, они выдерживают резкие многократные изменения температур, поэтому их используют в конструкциях сводов мартеновских печей и рабочем пространстве других металлургических устройств и сооружений.

Твердость кристаллов оксида хрома (III) - Cr2O3 соизмерима с твердостью корунда, что обеспечило его применение в составах шлифовальных и притирочных паст, используемых в машиностроении, ювелирной, оптической и часовой промышленности. Его также применяют в качестве катализатора гидрирования и дегидрирования некоторых органических соединений. Cr2O3 используется в живописи в виде зеленого пигмента и для окраски стекла.

Хромат калия - K2CrO4 применяется при дублении кож, в качестве протравы в текстильной промышленности, в производстве красителей, при отбеливании воска.

Дихромат калия (хромпик) - K2Cr2O7 также используется при дублении кож, протраве при окрашивании тканей, является ингибитором коррозии металлов и сплавов. Используется при изготовлении спичек и в лабораторных целях.

Хлорид хрома (II) CrCl2 - очень сильный восстановитель, легко окисляется даже кислородом воздуха, что используется в газовом анализе для количественного поглощения О2. Кроме того, ограниченно используется при получении хрома электролизом расплавов солей и хроматометрии.

Хромокалиевые квасцы K2SO4.Cr2(SO4)3 24H2O используются в основном в текстильной промышленности - при дублении кожи.

Безводный хлорид хрома CrCl3 применяется для нанесения покрытий хрома на поверхность сталей химическим осаждением из газовой фазы, является составной частью некоторых катализаторов. Гидраты CrCl3 - протрава при крашении тканей.

Из хромата свинца РbCrО4 изготовляют различные красители.

Раствором бихромата натрия очищают и травят поверхность стальной проволоки перед цинкованием, а также осветляют латунь. Из бихромата натрия получают хромовую кислоту, которая используется в качестве электролита при хромировании металлических деталей.

Производство

В природе хром встречается в основном в виде хромистого железняка FeO∙Cr2O3, при его восстановлении углем получается сплав хрома с железом — феррохром, который непосредственно используется в металлургической промышленности при производстве хромистых сталей. Содержание хрома в таком составе доходит до 80 % (по массе).

Восстановление оксида хрома (III) углем предназначено для получения высокоуглеродистого хрома, необходимого для производства специальных сплавов. Процесс проводится в электродуговой печи.

Для получения чистого хрома предварительно получают оксид хрома (III), а затем восстанавливают его алюминотермическим способом. При этом предварительно смесь из порошкового или в виде стружки алюминия (Al) и шихту оксида хрома (Cr2O3) прогревают до температуры 500-600° С. Затем, возбуждают восстановление смесью перекиси бария с порошком алюминия, либо запалом части шихты с последующим добавлением оставшейся части. В этом процессе важно, чтобы образовавшейся тепловой энергии хватило на плавление хрома и его отделения от шлака.

Cr2O3 + 2Al = 2Cr + 2Al2O3

Получаемый таким способом хром содержит некое количество примесей: железа 0,25-0,40 %, серы 0,02 %, углерода 0,015–0,02 %. Содержание чистого вещества составляет 99,1–99,4 %. Такой хром хрупок и легко перемалывается в порошок.

Реальность такого метода была доказана и продемонстрирована еще в 1859 году Фридрихом Вёлером. В промышленных масштабах же алюмотермическое восстановление хрома стало возможно только после того, как стал доступным метод получения дешевого алюминия. Гольдшмидт первым разработал безопасный способ регулирования сильно экзотермического (следовательно - взрывоопасного) процесса восстановления.

При необходимости получения высокочистого хрома в промышленности используют электролитические методы. Электролизу подвергают смеси хромового ангидрида, хромоаммонийных квасцов или сульфата хрома с разбавленной серной кислотой. Оседающий в процессе электролиза на алюминиевых или нержавеющих катодах хром содержит растворенные газы в качестве примесей. Чистоты 99,90–99,995 % удается добиться с помощью высокотемпературной (1500-1700° С) очистки в потоке водорода и вакуумной дегазации. Передовые методики рафинирования электролитического хрома удаляют серу, азот, кислород и водород из «сырого» продукта.

Кроме того, возможно получение металлического Cr электролизом расплавов СrCl3 или CrF3 в смеси с фторидами калия, кальция, натрия при температуре 900° C в среде аргона.

Возможность электролитического способа получения чистого хрома доказал Бунзен в 1854 году, подвергая электролизу водный раствор хлорида хрома.

В промышленности используется и силикотермический способ получения чистого хрома. При этом хром из окиси восстанавливается кремнием:

2Cr2O3 + 3Si + 3CaO = 4Cr + 3CaSiO3

Силикотермически хром выплавляют в дуговых печах. Добавка негашеной извести позволяет перевести тугоплавкий диоксид кремния в легкоплавкий шлак силикат кальция. Чистота силикотермического хрома примерно такая же, как и алюминотермического, однако, естественно, содержание в нем кремния несколько выше, а алюминия несколько ниже.

Еще Cr можно получать восстановлением Cr2O3 водородом при 1500° С, восстановлением безводного CrCl3 водородом, щелочными или щелочноземельными металлами, магнием и цинком.

Для получения хрома пытались применить и другие восстановители - углерод, водород, магний. Однако эти способы не получили широкого распространения.

В процессе Ван Аркеля – Кучмана – Де Бура применяется разложение иодида хрома (III) на нагретой до 1100° С проволоке с осаждением на ней чистого металла.

Физические свойства

Хром — твердый, весьма тяжелый, тугоплавкий, ковкий металл серо-стального цвета. Чистый хром довольно пластичен, кристаллизуется в объемно-центрированной решетке, а = 2,885Å (при температуре 20° С). При температуре около 1830° С велика вероятность преобразования в модификацию с гранецентрированной решеткой, а = 3,69Å. Атомный радиус 1,27 Å; ионные радиусы Cr2+ 0,83Å, Cr3+ 0,64Å, Cr6+ 0,52 Å.

Температура плавления хрома напрямую зависит от его чистоты. Поэтому определение этого показателя для чистого хрома весьма сложная задача - ведь даже небольшое содержание примесей азота или кислорода могут существенно изменить значение температуры плавления. Множество исследователей на протяжении не одного десятилетия занимались этим вопросом и получали далекие друг от друга результаты: от 1513 до 1920° C. Ранее было принято считать, что этот металл плавится при температуре 1890° C, но современные исследования указывают температуру в 1907° С, хром кипит при температуре свыше 2500° C - данные также разнятся: от 2199° C до 2671° С. Плотность хрома меньше, чем у железа; она составляет 7,19 г\см3 (при температуре 200° C).

Хрому свойственны все основные характеристики металлов - он хорошо проводит теплоту, его сопротивление электрическому току очень мало, как и большинство металлов, хром имеет характерный блеск. Кроме того, этот элемент имеет одну очень интересную особенность: дело в том, что при температуре 37° C его поведение не поддается объяснению - происходит резкое изменение многих физических свойств, это изменение имеет скачкообразный характер. Хром, как заболевший человек при температуре 37° C начинает капризничать: внутреннее трение хрома достигает максимума, модуль упругости падает до минимальных значений. Скачет значение электропроводности, постоянно изменяется термоэлектродвижущая сила, коэффициент линейного расширения. Данный феномен ученые пока объяснить не могут.

Удельная теплоемкость хрома 0,461 кДж/(кг.К) или 0,11 кал/(г °С) (при температуре 25°С); коэффициент теплопроводности 67 Вт/(м К) или 0,16 кал/(см сек °С) (при температуре 20 °С). Термический коэффициент линейного расширения 8,24 10-6 (при 20 °С). Хром при температуре 20 °С имеет удельное электросопротивление 0,414 мком м, а его термический коэффициент электросопротивления в интервале 20-600° С составляет 3,01 10-3.

Известно, что хром очень чувствителен к примесям – самые малые доли других элементов (кислород, азот, углерод) способны сделать хром очень хрупким. Получить же хром без этих примесей крайне трудно. По этой причине данный металл в конструкционных целях не используется. Зато в металлургии он активно применяется, как легирующий материал, так как его добавка в сплав делает сталь твердой и износостойкой, ведь хром самый твердый из всех металлов - он подобно алмазу режет стекло! Твердость высокочистого хрома по Бринеллю 7-9 Мн/м2 (70-90 кгс/см2). Хромом легируют пружинные, рессорные, инструментальные, штамповые и шарикоподшипниковые стали. В них (кроме шарикоподшипниковых сталей) хром присутствует вместе с марганцем, молибденом, никелем, ванадием. Добавка хрома к обычным сталям (до 5 % Сr) улучшает их физические свойства и делает металл более восприимчивым к термической обработке.

Хром антиферромагнитен, удельная магнитная восприимчивость 3,6 10-6. Удельное электрическое сопротивление 12,710-8 Ом. Температурный коэффициент линейного расширения хрома 6,210-6. Теплота парообразования этого металла составляет 344,4 кДж/Моль.

Хром устойчив к коррозии на воздухе и в воде.

Химические свойства

Химически хром довольно инертен, это объясняется наличием на его поверхности прочной тонкой пленки оксида. На воздухе Cr не окисляется, даже в присутствии влаги. При нагреве окисление протекает исключительно на поверхности металла. При 1200° C пленка разрушается, и окисление протекает гораздо быстрее. При 2000° C хром сгорает с образованием зелёного оксида хрома (III) Cr2O3, обладающего амфотерными свойствами. Сплавляя Cr2O3 со щелочами, получают хромиты:

Cr2O3 + 2NaOH = 2NaCrO2 + H2O

Непрокаленный оксид хрома (III) легко растворяется в щелочных растворах и в кислотах:

Cr2O3 + 6HCl = 2CrCl3 + 3Н2О

В соединениях хром в основном проявляет степени окисления Cr+2, Cr+3, Cr+6. Наиболее устойчивыми являются Cr+3 и Cr+6. Так же существуют некоторые соединения, где хром имеет степени окисления Cr+1, Cr+4, Cr+5. Соединения хрома весьма разнообразны по цвету: белые, синие, зеленые, красные, фиолетовые, черные и многие другие.

Хром легко реагирует с разбавленными растворами соляной и серной кислот с образованием хлорида и сульфата хрома и выделением водорода:

Cr + 2HCl = CrCl2 + H2

Царская водка и азотная кислота пассивируют хром. Причем пассивированный азотной кислотой хром не растворяется в разбавленных серной и соляной кислотах даже при длительном кипячении в их растворах, но в какой-то момент растворение все-таки происходит, сопровождаемое бурным вспениванием от выделившегося водорода. Этот процесс объясняется тем, что хром из пассивного состояния переходит в активное, в котором металл не защищен защитной пленкой. Причем, если в процессе растворения вновь добавить азотной кислоты, то реакция прекратится, так как хром вновь пассивируется.

При обычных условиях хром взаимодействует с фтором, образуя CrF3. При температурах выше 600° C происходит взаимодействие с водяными парами, результатом такого взаимодействия является оксид хрома (III) Сr2О3:

4Cr + 3O2 = 2Cr2O3

Cr2O3, представляет собой зеленые микрокристаллы с плотностью 5220 кг/м3 и высокой температурой плавления (2437° С). Оксид хрома (III) проявляет амфотерные свойства, но весьма инертен, его трудно растворить в водных кислотах и щелочах. Оксид хрома(III) довольно токсичен. Попадая на кожу, он способен вызывать экзему и другие кожные заболевания. Поэтому, при работе с оксидом хрома (III) обязательно необходимо использовать средства индивидуальной защиты.

Помимо окиси, известны другие соединения с кислородом: CrO, CrO3, получаемые косвенным путем. Наибольшую опасность представляет вдыхаемый аэрозоль оксида, вызывающий тяжелые заболевания верхних дыхательных путей и легких.

Хром образует большое число солей с кислородосодержащими компонентами.

«Национальный исследовательский Томский политехнический Университет»

Институт природных ресурсов Геоэкология и геохимия

Хром

По дисциплине:

Химия

Выполнил:

студент группы 2Г41 Ткачева Анастасия Владимировна 29.10.2014

Проверил:

преподаватель Стась Николай Федорович

Положение в периодической системе

Хром - элемент побочной подгруппы 6-ой группы 4-го периода периодической системы химических элементов Д. И. Менделеева с атомным номером 24. Обозначается символом Cr (лат. Chromium ). Простое вещество хром - твёрдый металлголубовато-белого цвета. Хром иногда относят к чёрным металлам.

Строение атома

17 Cl)2)8)7 - схема строения атома

1s2s2p3s3p- электронная формула

Атом располагается в III периоде, и имеет три энергетических уровня

Атом располагается в VII в группе, в главной подгруппе – на внешнем энергетическом уровне 7 электронов

Свойства элемента

Физические свойства

Хром - белый блестящий металл с кубической объемно-центрированной решеткой, а = 0,28845 нм, отличающийся твердостью и хрупкостью, с плотностью 7,2 г/см 3 , один из самых твердых чистых металлов (уступает только бериллию, вольфраму и урану), с температурой плавления 1903 град. И с температурой кипения около 2570 град. С. На воздухе поверхность хрома покрывается оксидной пленкой, которая предохраняет его от дальнейшего окисления. Добавка углерода к хрому еще больше увеличивает его твердость.

Химические свойства

Хром при обычных условиях – инертный металл, при нагревании становится довольно активным.

    Взаимодействие с неметаллами

При нагревании выше 600°С хром сгорает в кислороде:

4Cr + 3O 2 = 2Cr 2 O 3 .

С фтором реагирует при 350°С, с хлором – при 300°С, с бромом – при температуре красного каления, образуя галогениды хрома (III):

2Cr + 3Cl 2 = 2CrCl 3 .

С азотом реагирует при температуре выше 1000°С с образованием нитридов:

2Cr + N 2 = 2CrN

или 4Cr + N 2 = 2Cr 2 N.

2Cr + 3S = Cr 2 S 3 .

Реагирует с бором, углеродом и кремнием с образованием боридов, карбидов и силицидов:

Cr + 2B = CrB 2 (возможно образование Cr 2 B, CrB, Cr 3 B 4 , CrB 4),

2Cr + 3C = Cr 2 C 3 (возможно образование Cr 23 C 6 , Cr 7 B 3),

Cr + 2Si = CrSi 2 (возможно образование Cr 3 Si, Cr 5 Si 3 , CrSi).

С водородом непосредственно не взаимодействует.

    Взаимодействие с водой

В тонкоизмельченном раскаленном состоянии хром реагирует с водой, образуя оксид хрома (III) и водород:

2Cr + 3H 2 O = Cr 2 O 3 + 3H 2

    Взаимодействие с кислотами

В электрохимическом ряду напряжений металлов хром находится до водорода, он вытесняет водород из растворов неокисляющих кислот:

Cr + 2HCl = CrCl 2 + H 2 ;

Cr + H 2 SO 4 = CrSO 4 + H 2 .

В присутствии кислорода воздуха образуются соли хрома (III):

4Cr + 12HCl + 3O 2 = 4CrCl 3 + 6H 2 O.

Концентрированная азотная и серная кислоты пассивируют хром. Хром может растворяться в них лишь при сильном нагревании, образуются соли хрома (III) и продукты восстановления кислоты:

2Cr + 6H 2 SO 4 = Cr 2 (SO 4) 3 + 3SO 2 + 6H 2 O;

Cr + 6HNO 3 = Cr(NO 3) 3 + 3NO 2 + 3H 2 O.

    Взаимодействие с щелочными реагентами

В водных растворах щелочей хром не растворяется, медленно реагирует с расплавами щелочей с образованием хромитов и выделением водорода:

2Cr + 6KOH = 2KCrO 2 + 2K 2 O + 3H 2 .

Реагирует с щелочными расплавами окислителей, например хлоратом калия, при этом хром переходит в хромат калия:

Cr + KClO 3 + 2KOH = K 2 CrO 4 + KCl + H 2 O.

    Восстановление металлов из оксидов и солей

Хром – активный металл, способен вытеснять металлы из растворов их солей: 2Cr + 3CuCl 2 = 2CrCl 3 + 3Cu.

Свойства простого вещества

Устойчив на воздухе за счёт пассивирования. По этой же причине не реагирует с серной и азотной кислотами. При 2000 °C сгорает с образованием зелёного оксида хрома(III) Cr 2 O 3 , обладающего амфотерными свойствами.

Синтезированы соединения хрома с бором (бориды Cr 2 B, CrB, Cr 3 B 4 , CrB 2 , CrB 4 и Cr 5 B 3), с углеродом (карбиды Cr 23 C 6 , Cr 7 C 3 и Cr 3 C 2), c кремнием (силициды Cr 3 Si, Cr 5 Si 3 и CrSi) и азотом (нитриды CrN и Cr 2 N).

Соединения Cr(+2)

Степени окисления +2 соответствует основный оксид CrO (чёрный). Соли Cr 2+ (растворы голубого цвета) получаются при восстановлении солей Cr 3+ или дихроматов цинком в кислой среде («водородом в момент выделения»):

Все эти соли Cr 2+ - сильные восстановители вплоть до того, что при стоянии вытесняют водород из воды. Кислородом воздуха, особенно в кислой среде, Cr 2+ окисляется, в результате чего голубой раствор быстро зеленеет.

Коричневый или желтый гидроксид Cr(OH) 2 осаждается при добавлении щелочей к растворам солей хрома(II).

Синтезированы дигалогениды хрома CrF 2 , CrCl 2 , CrBr 2 и CrI 2

Соединения Cr(+3)

Степени окисления +3 соответствует амфотерный оксид Cr 2 O 3 и гидроксид Cr(OH) 3 (оба - зелёного цвета). Это - наиболее устойчивая степень окисления хрома. Соединения хрома в этой степени окисления имеют цвет от грязно-лилового (ион 3+) до зелёного (в координационной сфере присутствуют анионы).

Cr 3+ склонен к образованию двойных сульфатов вида M I Cr(SO 4) 2 ·12H 2 O (квасцов)

Гидроксид хрома (III) получают, действуя аммиаком на растворы солей хрома (III):

Cr+3NH+3H2O→Cr(OH)↓+3NH

Можно использовать растворы щелочей, но в их избытке образуется растворимый гидроксокомплекс:

Cr+3OH→Cr(OH)↓

Cr(OH)+3OH→

Сплавляя Cr 2 O 3 со щелочами получают хромиты:

Cr2O3+2NaOH→2NaCrO2+H2O

Непрокаленный оксид хрома(III) растворяется в щелочных растворах и в кислотах:

Cr2O3+6HCl→2CrCl3+3H2O

При окислении соединений хрома(III) в щелочной среде образуются соединения хрома(VI):

2Na+3HO→2NaCrO+2NaOH+8HO

То же самое происходит при сплавлении оксида хрома (III) со щелочью и окислителями, или со щелочью на воздухе (расплав при этом приобретает жёлтую окраску):

2Cr2O3+8NaOH+3O2→4Na2CrO4+4H2O

Соединения хрома (+4) [

При осторожном разложении оксида хрома(VI) CrO 3 в гидротермальных условиях получают оксид хрома(IV) CrO 2 , который является ферромагнетикоми обладает металлической проводимостью.

Среди тетрагалогенидов хрома устойчив CrF 4 , тетрахлорид хрома CrCl 4 существует только в парах.

Соединения хрома (+6)

Степени окисления +6 соответствует кислотный оксид хрома (VI) CrO 3 и целый ряд кислот, между которыми существует равновесие. Простейшие из них - хромовая H 2 CrO 4 и двухромовая H 2 Cr 2 O 7 . Они образуют два ряда солей: желтые хроматы и оранжевые дихроматы соответственно.

Оксид хрома (VI) CrO 3 образуется при взаимодействии концентрированной серной кислоты с растворами дихроматов. Типичный кислотный оксид, при взаимодействии с водой он образует сильные неустойчивые хромовые кислоты: хромовую H 2 CrO 4 , дихромовую H 2 Cr 2 O 7 и другие изополикислоты с общей формулой H 2 Cr n O 3n+1 . Увеличение степени полимеризации происходит с уменьшением рН, то есть увеличением кислотности:

2CrO+2H→Cr2O+H2O

Но если к оранжевому раствору K 2 Cr 2 O 7 прилить раствор щёлочи, как окраска вновь переходит в жёлтую так как снова образуется хромат K 2 CrO 4:

Cr2O+2OH→2CrO+HO

До высокой степени полимеризации, как это происходит у вольфрама и молибдена, не доходит, так как полихромовая кислота распадается на оксид хрома(VI) и воду:

H2CrnO3n+1→H2O+nCrO3

Растворимость хроматов примерно соответствует растворимости сульфатов. В частности, желтый хромат бария BaCrO 4 выпадает при добавлении солей бария, как к растворам хроматов, так и к растворам дихроматов:

Ba+CrO→BaCrO↓

2Ba+CrO+H2O→2BaCrO↓+2H

Образование кроваво-красного малорастворимого хромата серебра используют для обнаружения серебра в сплавах при помощи пробирной кислоты.

Известны пентафторид хрома CrF 5 и малоустойчивый гексафторид хрома CrF 6 . Также получены летучие оксигалогениды хрома CrO 2 F 2 и CrO 2 Cl 2 (хромилхлорид).

Соединения хрома(VI) - сильные окислители, например:

K2Cr2O7+14HCl→2CrCl3+2KCl+3Cl2+7H2O

Добавление к дихроматам перекиси водорода, серной кислоты и органического растворителя (эфира) приводит к образованию синего пероксида хрома CrO 5 L (L - молекула растворителя), который экстрагируется в органический слой; данная реакция используется как аналитическая.

Хром - это микроэлемент, который используется в разных формах. В биодобавках это обычно его хлорид или пиколинат (лучше всасываемая кишечником соль). Хорошо усваивается присутствующий в дрожжах комплекс, известный как фактор глюкозотолерантности и включающий хром, и три аминокислоты - глутаминовую, глицин и цистеин.

Полезные свойства хрома и роль в организме

Хром необходим для работы инсулина. Этот гормон отвечает за перенос глюкозы из крови в клетки, где она «сжигается» с выделением энергии. Инсулин эффективен и способствует поддержанию нормального уровня сахара в крови, только если организму хватает хрома. Этот металл увеличивает количество инсулиновых рецепторов на клеточной мембране. Повышая нашу толерантность к глюкозе (способность переносить ее потребление без отрицательных последствий для здоровья) за счет роста эффективности инсулина, хром тормозит его выработку, а в результате подавляет превращение сахара в жиры. Отсюда следует снижение в крови уровней холестерина (особенно «плохого», т. е. липопротеинов низкой плотности) и триглицеридов.

Профилактика

Добавки хрома снижают риск сахарного диабета у инсулинорезистентных людей. Они вырабатывают достаточно инсулина, но чувствительность к нему клеток понижена. В результате для поддержания нормального уровня глюкозы в крови поджелудочной железе приходится секретировать повышенные количества этого фермента. Однако даже их может не хватать, и тогда развивается диабет II типа (инсулинонезависимый) с избытком сахара в крови, что обычно сопровождается ожирением и гиперхолестеринемией (повышенным холестерином) со всеми вытекающими отсюда последствиями. Этот риск снижается профилактическим приемом хрома, ослабляющим инсулинорезистентность, а значит, усиливающим глюкозотолерантность.

Польза хрома

Стресс, инфекция, повышенные физические нагрузки ускоряют «сжигание» глюкозы, а в результате и мобилизацию хрома, который интенсивнее выводив с мочой. То же самое наблюдается при гипергликемических обострениях у больных диабетом. Поступление хрома с пищей обычно едва дотягивает до нормы, поэтому в таких ситуациях желательно принимать его добавки.

Показания и способы применения хрома, рекомендуемая суточная норма, противопоказания, пищевые источники хрома

Рекомендации по суточной норме хрома отсутствуют, но считается, что его дефицит у взрослых может быть предупрежден дозами от 50 до 200 мкг в сутки. Следует отметить, что даже при разнообразной, здоровой диете получить с пищей 200 мкг хрома в сутки практически нереально. Стандартное меню обычно дает нам 40-50 мкг/сут., а голодная диета (например, при похудении), естественно, меньше.

– Недостаток. Дефицит хрома чреват раздражительностью, набором веса и нарушением чувствительности конечностей, а также обострением инсулинонезависимого диабета.

Избыток. Хромовые добавки, по-видимому, безвредны. Однако их высокие дозы затрудняют усвоение и .

Показания к применению хрома

Затрудненное усвоение белков, жиров или углеводов.

Повышенный уровень глюкозы в крови (инсулинорезистентность, диабет II типа).

Повышенный уровень в крови «плохого» холестерина (липопротеинов низкой плотности) и триглицеридов.

Противопоказания

Больные диабетом должны принимать хром только после консультации с врачом. Возможно, им придется скорректировать дозы инсулина и/или других, уже назначенных при их болезни медикаментов.

Способы применения

Дозы

Обычно хром в добавках сочетается с другими минеральными веществами, поэтому надо уточнять по надписи на упаковке его количество в препарате. В одной таблетке или капсуле его должно быть от 25 до 200 мкг (больше - опасно). Такие биодобавки принимают как общеукрепляющие средства, а также при сбрасывании веса с помощью голодной диеты и для повышения эффективности инсулина.

Хром - элемент побочной подгруппы 6-ой группы 4-го периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 24. Обозначается символом Cr (лат. Chromium). Простое вещество хром- твёрдый металл голубовато-белого цвета.

Химические свойства хрома

При обычных условиях хром реагирует только со фтором. При высоких температурах (выше 600°C) взаимодействует с кислородом, галогенами, азотом, кремнием, бором, серой, фосфором.

4Cr + 3O 2 – t° →2Cr 2 O 3

2Cr + 3Cl 2 – t° → 2CrCl 3

2Cr + N 2 – t° → 2CrN

2Cr + 3S – t° → Cr 2 S 3

В раскалённом состоянии реагирует с парами воды:

2Cr + 3H 2 O → Cr 2 O 3 + 3H 2

Хром растворяется в разбавленных сильных кислотах (HCl, H 2 SO 4)

В отсутствии воздуха образуются соли Cr 2+ , а на воздухе – соли Cr 3+ .

Cr + 2HCl → CrCl 2 + H 2 ­

2Cr + 6HCl + O 2 → 2CrCl 3 + 2H 2 O + H 2 ­

Наличие защитной окисной плёнки на поверхности металла объясняет его пассив-ность по отношению к концентрированным растворам кислот – окислителей.

Соединения хрома

Оксид хрома (II) и гидроксид хрома (II) имеют основной характер.

Cr(OH) 2 + 2HCl → CrCl 2 + 2H 2 O

Соединения хрома (II) — сильные восстановители; переходят в соединения хрома (III) под действием кислорода воздуха.

2CrCl 2 + 2HCl → 2CrCl 3 + H 2 ­

4Cr(OH) 2 + O 2 + 2H 2 O → 4Cr(OH) 3

Оксид хрома (III) Cr 2 O 3 – зелёный, нерастворимый в воде порошок. Может быть получен при прокаливании гидроксида хрома (III) или дихроматов калия и аммония:

2Cr(OH) 3 – t° → Cr 2 O 3 + 3H 2 O

4K 2 Cr 2 O 7 – t° → 2Cr 2 O 3 + 4K 2 CrO 4 + 3O 2 ­

(NH 4) 2 Cr 2 O 7 – t° → Cr 2 O 3 + N 2 ­+ 4H 2 O­ (реакция «вулканчик»)

Амфотерный оксид. При сплавлении Cr 2 O 3 со щелочами, содой и кислыми солями получаются соединения хрома со степенью окисления (+3):

Cr 2 O 3 + 2NaOH → 2NaCrO 2 + H 2 O

Cr 2 O 3 + Na 2 CO 3 → 2NaCrO 2 + CO 2 ­

При сплавлении со смесью щёлочи и окислителя получают соединения хрома в степени окисления (+6):

Cr 2 O 3 + 4KOH + KClO 3 → 2K 2 CrO 4 + KCl + 2H 2 O

Гидроксид хрома (III) С r (ОН) 3 . Амфотерный гидроксид. Серо-зеленый, разлагается при нагревании, теряя воду и образуя зеленый метагидроксид СrО(ОН). Не растворяется в воде. Из раствора осаждается в виде серо-голубого и голубовато-зеленого гидрата. Реагирует с кислотами и щелочами, не взаимодействует с гидратом аммиака.

Обладает амфотерными свойствами — растворяется как в кислотах, так и в щелочах:

2Cr(OH) 3 + 3H 2 SO 4 → Cr 2 (SO 4) 3 + 6H 2 O Сr(ОН) 3 + ЗН + = Сr 3+ + 3H 2 O

Cr(OH) 3 + KOH → K , Сr(ОН) 3 + ЗОН — (конц.) = [Сr(ОН) 6 ] 3-

Cr(OH) 3 + KOH → KCrO 2 +2H 2 O Сr(ОН) 3 + МОН = МСrO 2(зел.) + 2Н 2 O (300-400 °С, М = Li, Na)

Сr(ОН) 3 →(120 o C H 2 O ) СrO(ОН) →(430-1000 0 С – H 2 O ) Cr 2 O 3

2Сr(ОН) 3 + 4NаОН (конц.) + ЗН 2 O 2(конц.) =2Na 2 СrO 4 + 8Н 2 0

Получение : осаждение гидратом аммиака из раствора солей хрома(Ш):

Сr 3+ + 3(NH 3 Н 2 O) = С r (ОН) 3 ↓ + ЗNН 4+

Cr 2 (SO 4) 3 + 6NaOH → 2Cr(OH) 3 ↓+ 3Na 2 SO 4 (в избытке щелочи — осадок растворяется)

Соли хрома (III) имеют фиолетовую или тёмно-зелёную окраску. По химическим свойствам напоминают бесцветные соли алюминия.

Соединения Cr (III) могут проявлять и окислительные, и восстановительные свойства:

Zn + 2Cr +3 Cl 3 → 2Cr +2 Cl 2 + ZnCl 2

2Cr +3 Cl 3 + 16NaOH + 3Br 2 → 6NaBr + 6NaCl + 8H 2 O + 2Na 2 Cr +6 O 4

Соединения шестивалентного хрома

Оксид хрома (VI) CrO 3 — ярко-красные кристаллы, растворимые в воде.

Получают из хромата (или дихромата) калия и H 2 SO 4 (конц.).

K 2 CrO 4 + H 2 SO 4 → CrO 3 + K 2 SO 4 + H 2 O

K 2 Cr 2 O 7 + H 2 SO 4 → 2CrO 3 + K 2 SO 4 + H 2 O

CrO 3 — кислотный оксид, со щелочами образует жёлтые хроматы CrO 4 2- :

CrO 3 + 2KOH → K 2 CrO 4 + H 2 O

В кислой среде хроматы превращаются в оранжевые дихроматы Cr 2 O 7 2- :

2K 2 CrO 4 + H 2 SO 4 → K 2 Cr 2 O 7 + K 2 SO 4 + H 2 O

В щелочной среде эта реакция протекает в обратном направлении:

K 2 Cr 2 O 7 + 2KOH → 2K 2 CrO 4 + H 2 O

Дихромат калия – окислитель в кислой среде:

К 2 Сr 2 O 7 + 4H 2 SO 4 + 3Na 2 SO 3 = Cr 2 (SO 4) 3 + 3Na 2 SO 4 + K 2 SO 4 + 4H 2 O

K 2 Cr 2 O 7 + 4H 2 SO 4 + 3NaNO 2 = Cr 2 (SO 4) 3 + 3NaNO 3 + K 2 SO 4 + 4H 2 O

K 2 Cr 2 O 7 + 7H 2 SO 4 + 6KI = Cr 2 (SO 4) 3 + 3I 2 + 4K 2 SO 4 + 7H 2 O

K 2 Cr 2 O 7 + 7H 2 SO 4 + 6FeSO 4 = Cr 2 (SO 4) 3 + 3Fe 2 (SO 4) 3 + K 2 SO 4 + 7H 2 O

Хромат калия К 2 Cr О 4 . Оксосоль. Желтый, негигроскопичный. Плавится без разложения, термически устойчивый. Хорошо растворим в воде (желтая окраска раствора отвечает иону СrO 4 2-), незначительно гидролизуется по аниону. В кислотной среде переходит в К 2 Cr 2 O 7 . Окислитель (более слабый, чем К 2 Cr 2 O 7). Вступает в реакции ионного обмена.

Качественная реакция на ион CrO 4 2- — выпадение желтого осадка хромата бария, разлагающегося в сильнокислотной среде. Применяется как протрава при крашении тканей, дубитель кож, селективный окислитель, реактив в аналитической химии.

Уравнения важнейших реакций:

2K 2 CrO 4 +H 2 SO 4(30%)= K 2 Cr 2 O 7 +K 2 SO 4 +H 2 O

2K 2 CrO 4(т) +16HCl (кон ц., гор.) =2CrCl 3 +3Cl 2 +8H 2 O+4KCl

2K 2 CrO 4 +2H 2 O+3H 2 S=2Cr(OH) 3 ↓+3S↓+4KOH

2K 2 CrO 4 +8H 2 O+3K 2 S=2K[Сr(ОН) 6 ]+3S↓+4KOH

2K 2 CrO 4 +2AgNO 3 =KNO 3 +Ag 2 CrO 4(красн.) ↓

Качественная реакция:

К 2 СгO 4 + ВаСl 2 = 2КСl + ВаCrO 4 ↓

2ВаСrO 4 (т)+ 2НСl (разб.) = ВаСr 2 O 7(p) + ВаС1 2 + Н 2 O

Получение : спекание хромита с поташом на воздухе:

4(Сr 2 Fe ‖‖)O 4 + 8К 2 CO 3 + 7O 2 = 8К 2 СrO 4 + 2Fе 2 O 3 + 8СO 2 (1000 °С)

Дихромат калия K 2 Cr 2 O 7 . Оксосоль. Техническое название хромпик . Оранжево-красный, негигроскопичный. Плавится без разложения, при дальнейшем нагревании разлагается. Хорошо растворим в воде (оранжевая окраска раствора отвечает иону Сr 2 O 7 2-). В щелочной среде образует К 2 CrO 4 . Типичный окислитель в растворе и при сплавлении. Вступает в реакции ионного обмена.

Качественные реакции — синее окрашивание эфирного раствора в присутствии Н 2 O 2 , синее окрашивание водного раствора при действии атомарного водорода.

Применяется как дубитель кож, протрава при крашении тканей, компонент пиротехнических составов, реагент в аналитической химии, ингибитор коррозии металлов, в смеси с Н 2 SO 4 (конц.) — для мытья химической посуды.

Уравнения важнейших реакций:

4К 2 Cr 2 O 7 =4K 2 CrO 4 +2Cr 2 O 3 +3O 2 (500-600 o C)

K 2 Cr 2 O 7 (т) +14HCl (кон ц) =2CrCl 3 +3Cl 2 +7H 2 O+2KCl (кипячение)

K 2 Cr 2 O 7 (т) +2H 2 SO 4(96%) ⇌2KHSO 4 +2CrO 3 +H 2 O (“хромовая смесь”)

K 2 Cr 2 O 7 +KOH (конц) =H 2 O+2K 2 CrO 4

Cr 2 O 7 2- +14H + +6I — =2Cr 3+ +3I 2 ↓+7H 2 O

Cr 2 O 7 2- +2H + +3SO 2(г) =2Cr 3+ +3SO 4 2- +H 2 O

Cr 2 O 7 2- +H 2 O +3H 2 S (г) =3S↓+2OH — +2Cr 2 (OH) 3 ↓

Cr 2 O 7 2- (конц) +2Ag + (разб.) =Ag 2 Cr 2 O 7 (т. красный) ↓

Cr 2 O 7 2- (разб.) +H 2 O +Pb 2+ =2H + + 2PbCrO 4 (красный) ↓

K 2 Cr 2 O 7(т) +6HCl+8H 0 (Zn)=2CrCl 2(син) +7H 2 O+2KCl

Получение: обработка К 2 СrO 4 серной кислотой:

2К 2 СrO 4 + Н 2 SO 4 (30%) = К 2 Cr 2 O 7 + К 2 SO 4 + Н 2 O



Поделиться