Трехмерные аттракторы лоренца. Реферат по математике на тему "аттрактор лоренца"

Изв. вузов «ПНД», т. 15, № 1, 2007 УДК 517.9

АТТРАКТОР ЛОРЕНЦА В СДВИГОВЫХ ТЕЧЕНИЯХ

А.М. Мухамедов

В рамках ранее предложенной модели хаотической динамики сплошной среды получена реализация трехмерного режима пульсаций скорости течения, отвечающего аттрактору типа Лоренца. Решение представляет собой набор структур, определяющих геометрию редуцированного к трехмерному случаю расслоенного многообразия, образованного пульсациями скоростей течения среды. Сама динамика аттрактора Лоренца проявляется в виде временной зависимости пульсаций скоростей вдоль линий тока среднего течения.

Как известно, один из классических примеров детерминированного хаоса -аттрактор Лоренца - открытый в результате гидродинамических исследований прикладного характера, все еще не получил адекватного воспроизведения в формализме существующей турбулентной механики. В работах автора была высказана гипотеза о том, что классическое гидродинамическое решение этой задачи не может быть получено в принципе, и предложено обоснование такого вывода. В его основе лежало понимание того, что аттракторные модели хаотической динамики затрагивают мезоскопический уровень движения сплошной среды, и что в классических уравнениях Навье - Стокса этот уровень не представлен. Отсюда следовало предложение расширить варианты решения проблемы аттрактора Лоренца за счет явного включения в математический формализм гидродинамики дополнительных мезоструктур, выводящих аппарат этой теории за рамки классических операций с уравнениями Навье - Стокса.

В настоящее время аттракторные режимы динамики сплошных сред конструируются в рамках моделей, представляющих собой далеко уходящие абстракции движения сплошной среды, почти не использующие представления о механических взаимодействиях частиц среды друг с другом . В одних случаях эти абстракции отображают свойства операторов эволюционного типа, действующих в иерархии вложенных друг в друга гильбертовых пространств. В других случаях они отображают динамику конечномерных систем, воспроизводящих изменения состояний среды, но при этом каждое из состояний актуально представлено всего лишь точкой соответствующего фазового многообразия. Подобное моделирование не отвечает прикладному назначению гидромеханики, требующему воспроизведения всех существенных структур непосредственно, то есть в пространстве, занятом сплошной средой. Если учесть аргументы теоретических и экспериментальных данных в пользу

существования такого представления , то воспроизведение аттракторов в контексте динамики пространственно-временных характеристик среды представляется настоятельной необходимостью.

В данной работе строится аттрактор Лоренца в рамках предложенной в модели турбулентной динамики. Согласно этой модели, фазовыми пространствами турбулентных режимов являются расслоения струй пульсаций гидродинамических величин. Геометрия пульсационных расслоений предполагается априори произвольной, определяемой моделируемыми особенностями соответствующих хаотических режимов. Основным объектом моделирования является хаотическая структура, представляющая собой комплекс неустойчивых траекторий движения точек среды. Предполагается, что каждому установившемуся турбулентному режиму отвечает вполне определенная хаотическая структура. В траектории хаотической структуры отождествлялись с множеством интегральных кривых неинтегрируемого (неголономного) распределения типа Пфаффа, заданного на расслоении пульсаций динамических переменных.

Характерной чертой предложенной модели является способ Лагранжа описания движения среды, не сводящийся, в общем случае, к описанию движения в переменных Эйлера. При этом оказалось, что описание Лагранжа замечательно приспособлено для отображения динамики систем со странными аттракторами. Вместо жестких ограничений парадигмы Эйлера описание Лагранжа накладывает гораздо более мягкие условия, служащие для определения геометрических объектов соответствующих неголономных распределений. Такое изменение акцента моделирования позволяет воспроизводить разнообразные аттракторы в динамике пучков частиц континуальных сред.

1. Зададимся уравнениями динамики пульсаций трехмодового режима

(уг + 4 (х,у!)(хк = Аг{х,у^)(И {1,3,к = 1,2,3), (1)

где хк и уг образуют наборы пространственных и динамических координат расслоения пульсаций, а объекты шгк{х,у^)(хк и Аг{х,у^)М определяют собой характер межмодовых взаимодействий режима. Можно рассматривать эти объекты и само уравнение (1) как правила образования производных от динамических координат по пространственным координатам и времени, определяемых реальной турбулентной эволюцией. Инвариантный геометрический смысл этих объектов состоит в том, что в расслоении пульсаций они определяют объект внутренней связности и вертикальное векторное поле, соответственно.

Предположим, что введенные выше динамические координаты имеют смысл пульсаций скорости течения среды, то есть актуальная скорость среды может быть разложена на поле скоростей среднего течения и пульсации по формуле

иг{х,у)= и0 {х)+ уг. (2)

Уравнения баланса массы и импульса примем в форме стандартного уравнения неразрывности и уравнения Навье - Стокса

Чр + уДи. (4)

Данная система уравнений еще не полна, так как в уравнение (4) входит давление, являющееся термодинамической переменной, динамика которой, в общем случае, выходит за рамки кинематики. Для описания пульсаций давления требуются новые динамические координаты, что увеличивает число необходимых степеней свободы для описания соответствующего турбулентного режима движения. Введем новую динамическую переменную, имеющую смысл пульсаций давления, то есть примем

p(x,y)= po(x)+ y4. (5)

Таким образом, первоначальный набор требуемых динамических координат для отображения движения сплошной среды является четырехмерным.

Возможность редукции к трехмерной системе с динамикой, аналогичной динамике системы Лоренца, заключается в том, что в уравнение (4) давление входит в виде градиента. Отсюда следует, что редукция к трехмерной динамике пульсаций скоростей может быть выполнена, если входящий в уравнение (4) градиент давления будет содержать только первые три динамические координаты. Для этого достаточно потребовать, чтобы в уравнениях динамики для четвертой координаты

dy4 + wj (x, y)dxk = A4 (x, y)dt (6)

коэффициенты форм связности w4(x,yj)dxk зависели только лишь от первых трех динамических координат. Заметим, что трехмерный режим может оказаться неустойчивым с точки зрения более полного описания, включающего в себя рассмотрение всех возбуждаемых степеней свободы. Тем не менее, мы ограничимся моделированием именно этой априори возможной динамики.

Рассмотрим условия, накладываемые уравнениями баланса (3), (4) на выражения неизвестных величин wk(x,yj)dxk и Ai(x,yj)dt, входящих в динамическое уравнение (1). Для этого подставим (2) и (5) в (3) и (4), и воспользуемся уравнениями (1) и (6). Для упрощения возникающих выражений будем считать пространственные координаты xk декартовыми. В этом случае можно не различать верхние и нижние индексы, поднимая и опуская их по мере необходимости записи ковариантных выражений. Тогда получим следующие уравнения для коэффициентов уравнения (1)

dkuk - wj = 0, (7)

Ai + (uk + yk)(djuk - wj) = -(dipo - w4i) - vDjwik. (8)

где введено обозначение Dj = dj - wk^y.

Для дальнейшего конкретизируем постановку задачи. Будем рассматривать режим, среднее поле скоростей которого описывает течение простого сдвига

uk = Ax3à\. (9)

Кроме того, сделаем предположения и в отношении геометрии расслоенного пространства пульсаций. Будем считать связность расслоения линейной функцией по динамическим координатам, то есть w^ = waj (x)yj (а = 1,..., 4). В этом случае из уравнения (8) сразу следует, что второй объект приобретает полиномиальную по динамическим координатам структуру. А именно, вертикальное векторное поле становится многочленом второго порядка по динамическим координатам, то есть

Ai = Ak (x) + Aj (x)yk + j (x)yj yk.

Таким образом, неизвестными функциями, определяющими уравнение динамики пульсаций рассматриваемого трехмодового режима, являются коэффициенты юак(х), Аг0{х), Агк{х) и А3к{х), для определения которых имеем уравнения (3) и (4). Заметим при этом, что уравнение (4) по существу сводится к определению коэффициентов вертикального векторного поля, тогда как выбор коэффициентов связности ограничивает только лишь уравнение неразрывности (3). Это уравнение оставляет значительный произвол в определении коэффициентов связности, оставляя тем самым широту моделирования пространственной структуры динамики пульсаций, согласованных с выбранным средним течением.

2. Рассмотрим возможность получения в данной задаче аттрактора типа Лоренца. С этой целью, прежде всего, обсудим разложение актуальных значений скорости на среднюю скорость и пульсации около среднего.

По смыслу пульсаций их временное среднее должно быть равным нулю, то есть

(у)т - 0. (10)

Вместе с тем, пульсации определяются как отклонения актуальных значений скорости от осредненного значения. Если среднее течение считать заданным, то отмеченное обстоятельство не позволяет выбирать в качестве модельного уравнения хаоса произвольную систему уравнений с хаотической динамикой. Для того чтобы переменные модельной системы уравнений можно было рассматривать как пульсации реальных гидромеханических величин, требуется выполнение условий (10). Если же (10) не выполняется, то это означает существование в динамике пульсаций неучтенного дрейфа. Соответственно, принятая модельная система оказывается несогласованной либо с учитываемыми действующими факторами, либо со структурой допускаемого среднего течения.

Далее, уравнение (1) является в общем случае не вполне интегрируемой системой типа Пфаффа. Свойство неинтегрируемости этого уравнения является принципиально важным, отвечающим характерной для турбулентного движения особенности. А именно, в процессе движения любые макроскопически малые турбулентные образования, частицы, моли, глобулы, утрачивают свою индивидуальность. Эта особенность учитывается неинтегрируемостью уравнения (1). По существу, (1) описывает ансамбль возможных траекторий движения точек континуума, образованного сплошной средой. Эти траектории определены в расслоении пульсаций. Их проекции на пространство, занимаемое сплошной средой, определяют динамику развития пульсаций вдоль соответствующих пространственных кривых. Заметим, что последние могут быть выбраны произвольно, определяя собой возможность рассмотрения динамики пульсаций вдоль любой пространственной кривой.

Рассмотрим для определенности динамику пульсаций вдоль линий тока среднего течения. Тогда имеем следующие динамические уравнения:

хг = и0, (11)

уг + ш)к у3 4 = Аг. (12)

Прежде чем рассматривать эту систему, преобразуем ее к безразмерным переменным. Для этого в исходном уравнении (4) вместо коэффициента вязкости введем

число Рейнольдса. Затем устраним явную зависимость от этого числа с помощью замены

<сг = 1_<юг, ю4 = со4, х = х^Иё, у = у^Кё, и0 = и0^Иё, рг = Иер0. (13)

Опуская знак надчеркивания над переменными, из (12) получаем

уг = ДиО - и!кдкиО - дгро + у3{-дзиО + <г - дкюЗ^ + ю\кю*к) + у3ук<3к. (14)

Проанализируем (13). Заметим, что используемая модель предполагает развитую турбулентность, то есть число Рейнольдса должно считаться достаточно большим. Тогда, если безразмерные величины имеют значения порядка единицы, то реальные размерные величины в соответствии с (13) будут указывать масштаб проявления динамики. В частности, из (13) следует, что пространственные масштабы оказываются малыми. Тем самым, используемая модель должна рассматриваться, прежде всего, как модель процессов турбулентного перемешивания на мезоскопическом уровне разрешения сплошной среды.

Теперь обратимся к анализу (11) и (12). Легко видеть, что для выбранного среднего течения уравнение (11) имеет простые интегралы. Соответствующие этому уравнения линии тока среднего течения представляют собой прямые, параллельные координатной оси х1. Исключая пространственные координаты, из (12) получаем в общем случае систему неавтономных дифференциальных уравнений. При этом, если коэффициенты связности и градиент давления не зависят от координаты х1, то система (14) становится автономной, содержащей оставшиеся пространственные координаты х2 и х3 в качестве параметров. В этом случае открывается реальный путь к прямому моделированию пространственно неоднородной квазистационарной динамики пульсаций. Ниже будет приведен пример такого моделирования.

В заключение этого пункта заметим, что возникновение неголономного распределения, задаваемого системой Пфаффа (1), (6), является следствием предположения о том, что в состоянии установившейся сильной турбулентности класс возможных траекторий движения частиц среды является стабильным образованием. Необходимым условием этой новой стабильности является требование неустойчивости траекторий движения точек, что, в свою очередь, предполагает большие значения числа Рейнольдса. Попытка распространения подхода на малые значения числа Яе является необоснованной.

3. Обратимся к построению примера, в котором пульсации скорости вдоль траекторий среднего течения описываются канонической системой типа Лоренца. Для простоты будем считать все коэффициенты связности постоянными. В этом случае получаем пространственно-однородную вдоль линий тока среднего течения динамику, которая, тем не менее, вдоль произвольных линий не является пространственно-однородной. Будем называть сделанное допущение квазиоднородным приближением.

Наша задача состоит в том, чтобы придать уравнению (14) вид канонической системы Лоренца. Первым видимым препятствием для этого оказывается неопределенность отождествления динамических координат и соответствующих переменных

из канонической системы. Полагая, что различные типы механизмов межмодовых взаимодействий позволят смоделировать любые из подобных отождествлений, выберем следующий вариант. Пусть структура уравнения (14) имеет следующий вид:

у1 = а(-у1 + у2), (15)

у2 = (г - (г))у1 - у2 - у1у3, (16)

у3 = -у(у3 + (г)) + у1у2, (17)

где явно выделено регулярное слагаемое, которое в соответствии со сказанным в п. 2 должно быть исключено из выражения для пульсаций.

х = о(-х + у), у = гх - у - хг, г= -у г + ху. (18)

Для этого предположим, что временные средние для переменных системы (18) существуют. Исходя из инвариантности этой системы относительно преобразований

х ^ -х, у ^ -у, г ^ г (19)

естественно ожидать, что средние для первых двух переменных должны быть нулевыми. Тогда подстановка

х ^ х, у ^ у, г ^ г + (г) (20)

в (18) дает систему уравнений (15) - (17).

В этой связи отметим, что для различных значений параметров системы Лоренца возможны решения как с нулевыми, так и с отличными от нуля средними значениями первых двух переменных . Имея это в виду, ограничим последующее рассмотрение первой из указанных возможностей. Кроме того, заметим, что подстановка (20) может быть выполнена и в том случае, когда слагаемое в третьем выражении (20) не будет иметь смысла временного среднего. При этом для последующей интерпретации может потребоваться новое определение процедуры осреднения. В общем случае пригодное определение потребует уточнения временных масштабов рассматриваемых явлений. Ясно то, что подобные переопределения потребуют более детального учета как начальных данных, так и вариаций параметров системы. Известный эффект взаимодействия хаотических аттракторов показывает, каким образом могут возникать неоднозначности в определении средних при малых вариациях параметров движения .

Вернемся к нашему рассмотрению. Сравнивая коэффициенты системы (15) -(17) и (14), получаем

(ДиО - и£дки0 - с/ро) =

(-3]иО + - дкю] + ю^) =

V -У (г)) (-о

г -(г) -1 0 V 0 0 -у У

Кроме того, из (7) имеем

дк и0 = 0, 0.

Рассмотрим (21) и (24). Подставляя выражение (9), легко видеть, что (24) выполняется тождественно, а (21) сводится лишь к определению среднего градиента давления. При этом градиент оказывается перпендикулярным к средней скорости течения, что является следствием выбранного отождествления переменных канонической системы Лоренца и компонент пульсаций скорости.

Обратимся к уравнениям (23) и (25). Из (23) получаем однозначные выражения для симметризованных по нижним индексам компонент объекта связности. Антисимметричная часть определяется из (25) с некоторым произволом. Общее решение этих уравнений дается следующим выражением:

/ аё,х2 - Ьйхг -айх1 + сд,х3 Ьйх1 - сйх2 \

ейх2 - /йх3 -ейх1 + Ьйх3 (/ - 1)йх1 - Ьйх2 V ря1х2 - ейх3 (-р + 1)йх1 + айх3 ейх1 - айх2)

Обратимся к оставшемуся уравнению (22). Это матричное уравнение представляет собой систему из 9 квадратичных алгебраических уравнений

Ь2 - с(р + /) +

ае - Ьр + Юр = г - (г) ,

еЬ - а/ + ю43 = 0,

ае - Ьр + Ь + Ю21 = о,

С/ + е2 + Ь2 - (1 - /)(1 - р) + ю42 = -1,

Ес + аЬ + ю43 = 0,

А/ + еЬ + а - А + юЗ1 = 0 ,

Ес + аЬ + ю42 = 0,

Ср - (1 - /)(1 - р) + е2 + а2 + юЗ3 = -у.

Неизвестными в ней являются 6 коэффициентов связности (26), 9 компонент тензора давления, 1 коэффициент, определяющий величину средней скорости, и 3 параметра системы Лоренца. Отсюда следует, что решение этой системы определяется со значительным параметрическим произволом. В рассматриваемом трехмерном режиме тензор градиента давления ю>4г является произвольным и за счет его конкретизации можно смоделировать желаемую динамику при любом, заранее фиксированном, выборе коэффициентов связности. Для многомерных режимов компоненты тензора давления включены в более полную систему уравнений, учитывающих динамику всех возбуждаемых степеней свободы. В этом случае тензор давления уже не может быть произвольным. В этой связи интересно рассмотреть различные частные варианты определения тензора давления, предполагая, что физически разумные допущения должны находить свои представления в более полных, учитывающих многомерную динамику, уравнениях. Будем предполагать тензор градиента давления диагональным с нулевой компонентой, отвечающей координате у2. В этом случае (22) имеет следующее точное аналитическое решение:

ю!1 = .1 - а, ю43 = .1 - у + 1, .1 = (К - а) а - А2, К = г - {г), (27)

К - а т Ка, К - а АК

а = А, Ь = а - К, с =-- .1, р =-, f = -- К, е =---. (28)

Рассмотрим полученное решение (27), (28). В нем остались произвольными величины А, г, а, у, определяющие величину градиента скорости среднего течения, и три параметра модельной системы Лоренца. Все остальные характеристики движения выражены как функции отмеченного набора величин. За счет выбора определенных значений этих величин можно варьировать динамику пульсаций, а по формулам (26), (27) находить соответствующие значения компонент объекта связности. Если учесть, что каждый объект определяет характер взаимодействий пульсаций, то тем самым появляется возможность варьировать различные типы самих взаимодействий. В частности, варьировать величину компонент тензора давления. Следует заметить, что в некоторых случаях эти компоненты можно обратить тождественно в нуль. Особенность решений (27), (28) состоит в том, что обратить компоненты тензора давления в нуль, оставаясь в области тех значений параметров системы, для которых возникает динамика Лоренца, оказывается невозможным. (Однако это вполне возможно в области тех значений параметров, при которых динамика пульсаций является регулярной.)

Произведем некоторые оценки. Пусть параметры модельной системы отвечают аттрактору Лоренца с параметрами а = 10, г = 28, у = 8/3. В этом случае расчеты показывают, что пульсации имеют характерное время т ~ 0.7. В пределах расчетного промежутка времени Ь = 0 + 50, значения пульсаций принадлежат интервалам у1 = -17.3 + 19.8, у2 = -22.8 + 27.2 и у3 = -23.2 + 23.7.

Сопоставим абсолютные значения пульсаций скорости и градиента средней скорости. Из (13) следует, что пульсации получаются делением относительных значений на число л/Йё, тогда как градиент средней скорости остается неизменным. Примем для градиента скорости значение, равное единице по порядку величины, то

есть А ~ 1. Тогда при значении Яе=2000, то есть при нижнем критическом значении , для пульсаций получаем порядок величины, равный 50% от величины градиента. Для случая Яе=40000, пульсации скорости достигают только лишь 10%% от принятого значения градиента средней скорости. Отсюда видно, что разумные пропорции между средней скоростью и пульсациями могут быть обеспечены лишь в некотором диапазоне чисел Яе.

4. Новые данные выявляются при рассмотрении движения точек среды. Для динамики Лоренца в квазиоднородном приближении уравнения движения точек имеют вид

r -(z) -l 0 0 0 -Y

Aox3 -A(r - (z))x3

Эта система оказывается линейной с постоянными коэффициентами. Ее общее решение легко может быть получено элементарным интегрированием. Поэтому отметим только качественные особенности траекторий движения точек. Из характеристического уравнения для скоростей движения получаем, что имеется два отрицательных и один положительный корень. Тем самым в каждой точке пространства выделяются два сжимающих и одно растягивающее направления. Эти особенности динамики являются инвариантными характеристиками, которые могут быть использованы для классификации аттракторов, отвечающих течениям с одинаковыми значениями средней скорости.

Как следует из общего решения системы (29) и (30), возможные перемещения точек среды в направлениях, трансверсальных к линиям тока среднего течения, не ограничены. А именно, в проекции на ось х3 происходит регулярный дрейф. При этом точки, перемещаясь перпендикулярно линиям тока среднего течения, попадают в область больших значений скорости. В этом случае число Яе возрастает, что ведет к уменьшению относительной величины пульсаций. В рамках сделанного квазиоднородного приближения этот эффект ведет к относительному уменьшению пульсаций и, в конечном счете, к их вырождению во флуктуации.

Библиографический список

1. Mukhamedov A.M. Turbulent models: problems and solutions //17 IMACS Congress, Paper T4-1-103-0846, http://imacs2005.ec-lille.fr.

2. Mukhamedov A.M. Towards a gauge theory of turbulence // Chaos, Solitons & Fractals. 2006. Vol. 29. P. 253.

3. Ruelle D., Takens F. On the nature of turbulence // Commun. Math. Phys. 1971. Vol. 20. P. 167.

4. Бабин А.В., Вишик М.И. Аттракторы эволюционных уравнений. М.: Наука, 1989. 296 с.

5. Mandelbrot B. The fractal geometry of nature. Freeman. San Francisco, 1982.

6. Benzi RPaladin G., Parisi G., Vulpiani A. On the multifractal nature of fully developed turbulence and chaotic systems // J. Phys. A. 1984. Vol.17. P.3521.

7. Elnaschie M.S. The Feynman path integrals and E-Infinity theory from the two-slit Gedanken experiment // International Journal of Nonlinear sciences and Numerical Simulations. 2005. Vol. 6(4). P. 335.

8. Мухамедов А.М. Ансамблевые режимы турбулентности в сдвиговых течениях // Вестник КГТУ им. А.Н.Туполева. 2003, № 3. С. 36.

9. Юдович В.И. Асимптотика предельных циклов системы Лоренца при больших числах Релея // ВИНИТИ. 31.07.78. № 2611-78.

10. Анищенко В.С. Сложные колебания в простых системах. М.: Наука, 1990. 312 с.

11. Лойцянский Л.Г. Механика жидкости и газа. М.: Наука, 1987. 840 с.

Казанский государственный Поступила в редакцию 23.01.2006

технический университет После доработки 15.08.2006

LORENZ ATTRACTOR IN FLOWS OF SIMPLE SHIFT

In the frame of a model given before for simulation of chaotic dynamics of continuum medium the Lorenz attractor is represented. The simulation is given with the help of the structures that define the geometry of a fiber bundle associated with 3-dimensional regime of velocity pulsations. Lorenz dynamics appears as time dependence of pulsations along the lines of average flow.

Мухамедов Альфэрид Мавиевич - родился в Казани (1953). Окончил физический факультет Казанского государственного университета по кафедре гравитации и теории относительности (1976). Докторант кафедры теоретической и прикладной механики Казанского государственного технического университета им. А.Н.Туполева. Автор 12 работ по данной тематике, а также монографии «Научный поиск и методология математики» (Казань: Изд-во КГТУ, 2005, в соавторстве с Г.Д. Тарзимановой). Область научных интересов - математические модели хаотической динамики, геометрия расслоенных многообразий, методология современной математики.

фрактал множество жюлиа аттрактор

До настоящего момента мы изучали фракталы, которые являются статическими фигурами. Наш подход вполне приемлем до тех пор, пока не возникает необходимость рассмотрения таких природных явлений, как падающие потоки воды, турбулентные завихрения дыма, метеосистемы и потоки на выходе реактивных двигателей. В этих случаях один-единственный фрактал соответствует моментальному снимку данного феномена. Структуры, изменяющиеся во времени, мы определяем как динамические системы. Интуитивно понятно, что динамической противоположностью фрактала является хаос. Это означает, что хаос описывает состояние крайней непредсказуемости, возникающей в динамической системе, в то время как фрактальность описывает крайнюю иррегулярность или изрезанность, присущую геометрической конфигурации.

Достаточно скоро стало ясно, что многие хаотические динамические системы, описывающие феномены окружающего нас мира, устроены очень сложно и не могут быть представлены традиционными методами математического анализа. По-видимому, нет никакой возможности получить математические выражения для решений в замкнутом виде, даже если использовать бесконечные ряды или специальные функции.

Рассмотрим знаменитый пример, весьма наглядно демонстрирующий, что стоит за термином «хаотическая динамика». Эдвард Лоренц из Массачусетского технологического института в 1961 году занимался численными исследованиями метеосистем, в частности моделированием конвекционных токов в атмосфере Исследование аттрактора Лоренца включается сейчас в любой

математический пакет, например, Mathematica, Maple.. Он написал программу для решения следующей системы дифференциальных уравнений:

dx/dt = (-x + y),

dy/dt = rx - y - xz,

dz/dt = -bz + xy.

В дальнейших расчетах параметры, r и b постоянны и принимают значения = -10, r = 28 и b = 8/3.

Согласно описанию эксперимента, принадлежащему самому Лоренцу, он вычислял значения решения в течение длительного времени, а затем остановил счет. Его заинтересовала некоторая особенность решения, которая возникала где-то в середине интервала счета, и поэтому он повторил вычисления с этого момента. Результаты повторного счета, очевидно, совпали бы с результатами первоначального счета, если бы начальные значения для повторного счета в точности были равны полученным ранее значениям для этого момента времени. Лоренц слегка изменил эти значения, уменьшив число верных десятичных знаков. Ошибки, введенные таким образом, были крайне невелики. Но самое неожиданное было впереди. Вновь сосчитанное решение некоторое время хорошо согласовывалось со старым. Однако, по мере счета расхождение возрастало, и постепенно стало ясно, что новое решение вовсе не напоминает старое

Лоренц вновь повторял и проверял вычисления (вероятно, не доверяя компьютеру), прежде чем осознал важность эксперимента. То, что он наблюдал, теперь называется существенной зависимостью от начальных условий --- основной чертой, присущей хаотической динамике. Существенную зависимость иногда называют эффектом бабочки. Такое название относится к невозможности делать долгосрочные прогнозы погоды. Сам Лоренц разъяснил это понятие в статье «Предсказуемость: может ли взмах крылышек бабочки в Бразилии привести к образованию торнадо в Техасе?», опубликованной в 1979 году

Несмотря на большую значимость эксперимента Лоренца, в данной курсовой работе не будут рассматриваться модели, связанные с динамическими системами, описываемыми дифференциальными уравнениями. Напротив, мы будем рассматривать наиболее простые модели хаотической динамики --- дискретные, к которым относится знаменитое и вездесущее множество Мандельброта и сопутствующие ему множества Жюлиа.

Рис. 4.1.1. Аттрактор Лоренца.

Наиболее часто встречающееся несоответствие состоит в том, что люди полагают, что теория хаоса -- это теория о беспорядке. Ничто не могло бы быть так далеко от истины! Это не опровержение детерминизма и не утверждение о том, что упорядоченные системы невозможны; это не отрицание экспериментальных подтверждений и не заявление о бесполезности сложных систем. Хаос в теории хаоса и есть порядок -- и даже не просто порядок, а сущность порядка.

Это правда, что теория хаоса утверждает, что небольшие изменения могут породить огромные последствия. Но одной из центральных концепций в теории является невозможность точного предсказания состояния системы. В общем, задача моделирования общего поведения системы вполне выполнима, даже проста. Таким образом, теория хаоса сосредотачивает усилия не на беспорядке системы -- наследственной непредсказуемости системы -- а на унаследованном ей порядке -- общем в поведении похожих систем.

Таким образом, было бы неправильным сказать, что теория хаоса о беспорядке. Чтобы пояснить это на примере, возьмем аттрактор Лоренца (ри.1). Он основан на трех дифференциальных уравнениях, трех константах и трех начальных условиях.

Аттрактор представляет поведение газа в любое заданное время, и его состояние в определенный момент зависит от его состояния в моменты времени, предшествовавшие данному. Если исходные данные изменить даже на очень маленькие величины, скажем, эти величины малы настолько, что соизмеримы с колебаниями числа Авогадро (очень маленькое число порядка 1024), проверка состояния аттрактора покажет абсолютно другие числа. Это происходит потому, что маленькие различия увеличиваются в результате рекурсии.

Однако, несмотря на это, график аттрактора будет выглядеть достаточно похоже. Обе системы будут иметь абсолютно разные значения в любой заданный момент времени, но график аттрактора останется тем же самым, т.к. он выражает общее поведение системы.

Теория хаоса говорит, что сложные нелинейные системы являются наследственно непредсказуемыми, но, в то же время, теория хаоса утверждает, что способ выражения таких непредсказуемых систем оказывается верным не в точных равенствах, а в представлениях поведения системы -- в графиках странных аттракторов или во фракталах. Таким образом, теория хаоса, о которой многие думают как о непредсказуемости, оказывается, в то же время, наукой о предсказуемости даже в наиболее нестабильных системах.

Реферат

По дисциплине: Математика

Аттрактор Лоренца

Аттрактор Лоренца

решение системы при r =0,3

решение системы при r =1,8

решение системы при r =3,7

решение системы при r =10

решение системы при r =16

решение системы при r =24,06

решение системы при r =28 ― собственно, это и есть аттрактор Лоренца

решение системы при r =100 ― виден режим автоколебаний в системе

Аттрактор Лоренца (от англ. to attract - притягивать) ― инвариантное множество в трехмерном гладкого , которое имеет определённую сложную топологическую структуру и является асимптотически устойчивым, оно и все траектории из некоторой окрестности стремятся к при (отсюда название).

Аттрактор Лоренца был найден в численных экспериментах , исследовавшего поведение траекторий нелинейной системы:

при следующих значениях параметров: σ=10, r =28, b =8/3. Эта система вначале была введена как первое нетривиальное для задачи о морской воды в плоском слое, чем и мотивировался выбор значений σ, r и b , но она возникает также и в других физических вопросах и моделях:

    конвекция в замкнутой петле;

    вращение водяного колеса;

    модель одномодового ;

    диссипативный с инерционной нелинейностью.

Исходная гидродинамическая система уравнений:

где - скорость течения, - температура жидкости, - температура верхней границы (на нижней поддерживается ), - плотность, - давление, - сила тяжести, - соответственно , и кинематической .

В задаче о конвекции модель возникает при разложении скорости течения и температуры в двумерные и последующей их «обрезки» с точностью до первых-вторых гармоник. Кроме того, приведённая полная система уравнений записывается в . Обрезка рядов в определённой мере оправдана, так как Сольцмен в своих работах продемонстрировал отсутствие каких-либо интересных особенностей в поведении большинства гармоник.

Применимость и соответствие реальности

Обозначим физический смысл переменных и параметров в системе уравнений применительно к упомянутым задачам.

    Конвекция в плоском слое. Здесь x отвечает за скорость вращения водяных валов, y и z - за распределение температуры по горизонтали и вертикали, r - нормированное , σ - (отношение коэффициента кинематической к коэффициенту ), b содержит информацию о геометрии конвективной ячейки.

    Конвекция в замкнутой петле. Здесь x - скорость течения, y - отклонение температуры от средней в точке, отстоящей от нижней точки петли на 90°, z - то же, но в нижней точке. Подведение тепла производится в нижней точке.

    Вращение водяного колеса. Рассматривается задача о колесе, на ободе которого укреплены корзины с отверстиями в дне. Сверху на колесо симметрично относительно оси вращения льётся сплошной поток воды. Задача равнозначна предыдущей, перевернутой «вверх ногами», с заменой температуры на плотность распределения массы воды в корзинах по ободу.

    Одномодовый лазер. Здесь x - амплитуда волн в лазера, y - , z - инверсия населённостей , b и σ - отношения коэффициентов инверсии и поля к коэффициенту релаксации поляризации, r - интенсивность .

Стоит указать, что применительно к задаче о конвекции модель Лоренца является очень грубым приближением, весьма далёким от реальности. Более-менее адекватное соответствие существует в области регулярных режимов, где устойчивые решения качественно отображают экспериментально наблюдаемую картину равномерно вращающихся конвективных валов (). Хаотический режим, присущий модели, не описывает турбулентной конвекции в силу существенной обрезки исходных тригонометрических рядов.

Интересным является существенно большая точность модели при некоторой её модификации, применяемая в частности для описания конвекции в слое, подвергаемом вибрации в вертикальном направлении либо переменному тепловому воздействию. Такие изменения внешних условий приводят к модулированию коэффициентов в уравнениях. При этом высокочастотные Фурье-компоненты температуры и скорости существенно подавляются, улучшая соответствие модели Лоренца и реальной системы.

Примечательно везение Лоренца при выборе значения параметра , так как система приходит к только при значениях, больших 24,74, при меньших поведение оказывается совершенно иным.

Поведение решения системы

Рассмотрим изменения в поведении решения системы Лоренца при различных значениях параметра r. На иллюстрациях к статье приведены результаты численного моделирования для точек с начальными координатами (10,10,10) и (-10,-10,10). Моделирование производилось с помощью приведённой ниже программы, написанной на языке , построение графиков по полученным таблицам - из-за слабых графических возможностей Фортрана с помощью Compaq Array Viewer.

    r <1 - аттрактором является начало координат, других устойчивых точек нет.

    1< r <13,927 - траектории спирально приближаются (это соответствует наличию затухающих колебаний) к двум точкам, положение которых определяется формулами:

Эти точки определяют состояния стационарного режима конвекции, когда в слое формируется структура из вращающихся валов жидкости.

    r ≈13,927 - если траектория выходит из начала координат, то, совершив полный оборот вокруг одной из устойчивых точек, она вернется обратно в начальную точку - возникают две гомоклинические петли. Понятие гомоклинической траектории означает, что она выходит и приходит в одно и то же положение равновесия.

    r >13,927 - в зависимости от направления траектория приходит в одну из двух устойчивых точек. Гомоклинические петли перерождаются в неустойчивые предельные циклы, также возникает семейство сложно устроенных траекторий, не являющееся аттрактором, а скорее наоборот, отталкивающее от себя траектории. Иногда по аналогии эта структура называется «странным репеллером» (англ. to repel - отталкивать).

    r ≈24,06 - траектории теперь ведут не к устойчивым точкам, а асимптотически приближаются к неустойчивым предельным циклам - возникает собственно аттрактор Лоренца. Однако обе устойчивые точки сохраняются вплоть до значений r ≈24,74.

При больших значениях параметра траектория претерпевает серьезные изменения. Шильников и Каплан показали, что при очень больших r система переходит в режим автоколебаний, при этом, если уменьшать параметр, будет наблюдаться переход к хаосу через последовательность удвоений периода колебаний.

Значимость модели

Модель Лоренца является реальным физическим примером с хаотическим поведением, в отличие от различных искусственно сконструированных отображений ( , и др.).

Программы, моделирующие поведение системы Лоренца

Borland C

#include

#include

void main()

double x = 3.051522, y = 1.582542, z = 15.62388, x1, y1, z1;

double dt = 0.0001;

int a = 5, b = 15, c = 1;

int gd=DETECT, gm;

initgraph(&gd, &gm, "C:\\BORLANDC\\BGI");

do {

X1 = x + a*(-x+y)*dt;

Y1 = y + (b*x-y-z*x)*dt;

Z1 = z + (-c*z+x*y)*dt;

X = x1; y = y1; z = z1;

Putpixel((int)(19.3*(y - x*0.292893) + 320),

(int)(-11*(z + x*0.292893) + 392), 9);

} while (!kbhit());

closegraph();

Mathematica

data = Table[

With[{N = 1000, dt = 0.01, a = 5, b = 1 + j, c = 1},

NestList &,

{3.051522, 1.582542, 15.62388}, N

{j, 0, 5}];

Graphics3D@MapIndexed[{Hue], Point[#1]} &, data]

Borland Pascal

Program Lorenz;

Uses CRT, Graph;

Const

dt = 0.0001;

a = 5;

b = 15;

c = 1;

Var

gd, gm: Integer;

x1, y1, z1, x, y, z: Real;

Begin

gd:=Detect;

InitGraph(gd, gm, "c:\bp\bgi");

x:= 3.051522;

y:= 1.582542;

z:= 15.62388;

While not KeyPressed Do Begin

x1:= x + a*(-x+y)*dt;

y1:= y + (b*x-y-z*x)*dt;

z1:= z + (-c*z+x*y)*dt;

x:= x1;

y:= y1;

z:= z1;

PutPixel(Round(19.3*(y - x*0.292893) + 320),

Round(-11*(z + x*0.292893) + 392), 9);

End;

CloseGraph;

ReadKey;

End.

FORTRAN

program LorenzSystem

real,parameter::sigma=10

real,parameter::r=28

real,parameter::b=2.666666

real,parameter::dt=.01

integer,parameter::n=1000

real x,y,z

open(1,file="result.txt",form="formatted",status="replace",action="write")

x=10.;y=10.;z=10.

do i=1,n,1

x1=x+sigma*(y-x)*dt

y1=y+(r*x-x*z-y)*dt

z1=z+(x*y-b*z)*dt

x=x1

y=y1

z=z1

write(1,*)x,y,z

enddo

print *,"Done"

close(1)

end program LorenzSystem

QBASIC/FreeBASIC(«fbc -lang qb»)

DIM x, y, z, dt, x1, y1, z1 AS SINGLE

DIM a, b, c AS INTEGER

x = 3.051522: y = 1.582542: z = 15.62388: dt = 0.0001

a = 5: b = 15: c = 1

SCREEN 12

PRINT "Press Esc to quit"

WHILE INKEY$ <> CHR$(27)

x1 = x + a * (-x + y) * dt

y1 = y + (b * x - y - z * x) * dt

z1 = z + (-c * z + x * y) * dt

x = x1

y = y1

z = z1

PSET ((19.3 * (y - x * .292893) + 300), (-11 * (z + x * .292893) + 360)), 9

WEND

END

JavaScript и HTML5

var cnv = document.getElementById("cnv");

var cx = cnv.getContext("2d");

var x = 3.051522, y = 1.582542, z = 15.62388, x1, y1, z1;

var dt = 0.0001;

var a = 5, b = 15, c = 1;

var h = parseInt(cnv.getAttribute("height"));

var w = parseInt(cnv.getAttribute("width"));

var id = cx.createImageData(w, h);

var rd = Math.round;

var idx = 0;

i=1000000; while (i--) {

x1 = x + a*(-x+y)*dt;

y1 = y + (b*x-y-z*x)*dt;

z1 = z + (-c*z+x*y)*dt;

x = x1; y = y1; z = z1;

idx=4*(rd(19.3*(y - x*0.292893) + 320) + rd(-11*(z + x*0.292893) + 392)*w);

id.data = 255;

cx.putImageData(id, 0, 0);

IDL

PRO Lorenz

n=1000000 & r=dblarr(n,3) & r= & a=5. & b=15. & c=1.

FOR i=0.,n-2. DO r=r + [ a*(r-r), b*r-r-r*r, r*r-c*r ]*0.0001

plot,19.3*(r[*,1]-r[*,0]*0.292893)+320.,-11*(r[*,2]+r[*,0]*0.292893)+392.

END

Литература

    Кузнецов С. П. , Лекция 3. Система Лоренца; Лекция 4. Динамика системы Лоренца. // - М.: Физматлит, 2001.

    Saltzman B . Finite amplitude free convection as an initial value problem. // Journal of the atmospheric science, № 7, 1962 - p. 329-341.

    Лоренц Э . Детерминированное непериодическое движение // Странные аттракторы. - М., 1981. - С. 88-116.

Хаотические, странные аттракторы соответствуют непредсказуемому поведению систем, не имеющих строго периодической динамики, это математический образ детерминированных непериодических процессов. Странные аттракторы структурированы и могут иметь весьма сложные и необычные конфигурации в трехмерном пространстве.

Рис. 1.

и фазовые портреты (нижний ряд) для трех различных систем

(Глейк, 2001)

Хотя в работах некоторых математиков ранее была установлена возможность существования странных аттракторов, впервые построение странного аттрактора (рис. 2) как решение системы дифференциальных уравнений осуществил в работе по компьютерному моделированию термоконвекции и турбулентности в атмосфере американский метеоролог Э. Лоренц (E.Lorentz, 1963). Конечное состояние системы Лоренца чрезвычайно чувствительно к начальному состоянию. Сам же термин «странный аттрактор» появился позже, в работе Д. Рюэлля и Ф. Такенса в (D.Ruelle, F. Takens, 1971: см. Рюэль, 2001) о природе турбуленции в жидкости; авторы отмечали, что размерность странного аттрактора отлична от обычной, или топологической.Позже Б. Мандельброт (B.Mandelbrot) отождествил странные аттракторы, траектории которых при последовательных вычислениях компьютера бесконечно расслаиваются, расщепляются, с фракталами.

Рис. 2. (Хаотические траектории в системе Лоренца). Аттрактор Лоренца (Кроновер, 2000)

Лоренц (Lorenz, 1963) обнаружил, что даже простая система из трех нелинейных дифференциальных уравнений может привести к хаотическим траекториям В свою очередь, движение воздушных потоков в плоском слое жидкости постоянной толщины при разложении скорости течения и температуры в двойные ряды Фурье с последующем усечением до первых-вторых гармоник:

где s, r и b -- некоторые положительные числа, параметры системы. Обычно исследования системы Лоренца проводят при s =10, r =28 и b =8/3 (значения параметров).

Таким образом, системы, поведение которых детерминируется правилами, не включающим случайность, с течением времени проявляют непредсказуемость за счет нарастания, усиления, амплификации малых неопределенностей, флуктуаций. Наглядный образ системы с нарастанием неопределенности - так называемый биллиард Я.Г. Синая: достаточно большая последовательность соударений шаров неизбежно ведет к нарастанию малых отклонений от исчисляемых траекторий (за счет не идеально сферической поверхности реальных шаров, не идеально однородной поверхности сукна) и непредсказуемости поведения системы.

В таких системах «случайность создается подобно тому, как перемешивается тесто или тасуется колода карт» (Кратчфилд и др., 1987). Так называемое «преобразование пекаря» с последовательным растягиванием и складыванием, бесконечным образованием складок - одна из моделей возникновения перехода от порядка к хаосу; при этом число преобразований может служить мерой хаоса. Есть Аттрактор Айдзавы, который является частным случаем аттрактора Лоренца.

где а = 0,95, B = 0,7, с = 0,6, d = 3,5, е = 0,25, F = 0,1. Каждая предыдущая координата вводится в уравнения, полученное в результате значение, умноженное на значения времени.

Примеры других странных аттракторов

Аттрактор ВангСун

Здeсь a, b, d, e?R, c> 0 и f< 0 являются константами, cf ? 0, и x, y, z а это переменные состояния.

Аттрактор Рёсслера

Где a,b,c= положительные постоянные. При значениях параметров a=b=0.2 и

Обычно говорят, что хаос является более высокой формой порядка, однако более правильно считать хаос другой формой порядка - с неизбежностью в любой динамической системе за порядком в обычном его понимании следует хаос, а за хаосом порядок. Если мы определим хаос как беспорядок, то в таком беспорядке мы обязательно сможем увидеть свою, особенную форму порядка. Например, дым от сигарет сначала поднимается в виде упорядоченного столба под влиянием внешней среды принимает все более причудливые очертания, а его движения становятся хаотичными. Еще один пример хаотичности в природе - лист с любого дерева . Можно утверждать, что вы найдете много похожих листов, например дуба, однако ни одной пары одинаковых писем. Разница определена температурой, ветром, влажностью и многими другими внешними факторами, кроме чисто внутренних причин (например, генетической разницей).

Теория хаоса

Движение от порядка к хаосу и обратно, по всей видимости, является сущностью Вселенной, способствующие проявлению ее мы не изучали. Даже в человеческом мозгу одновременно присутствует упорядоченное и хаотическое начала. Первое отвечает левому полушарию мозга, а второе - правому. Левое полушарие отвечает за сознательное поведение человека, за выработку линейных правил и стратегий в поведении человека, где четко определяется «если..., то...». В правом же полушарии царит нелинейность и хаотичность. Интуиция является одним из проявлений правого полушария мозга. Теория хаоса изучает порядок хаотической системы, которая выглядит случайной, беспорядочной. При этом теория хаоса помогает построить модель такой системы, не ставя задачу точного предсказания поведения хаотической системы в будущем.

История теории хаоса

Первые элементы теории хаоса появились еще в XIX веке, однако настоящий научное развитие эта теория получил во второй половине XX века, вместе с работами Эдварда Лоренца (Edward Lorenz) из Массачусетского технологического института и франко-американского математика Бенуа Б. Мандельброта (Benoit B . Mandelbrot). Эдвард Лоренц в свое время (начало 60-х годов XX века, работа опубликована в 1963 году) рассматривал, в чем возникает трудность при прогнозировании погоды. К работе Лоренца в мире науки господствовало два мнения относительно возможности точного прогнозирования погоды на бесконечно длительный срок. Первый подход сформулировал еще в 1776 году французский математик Пьер Симон Лаплас . Лаплас заявил, что «... если мы представим себе разум, который в данное мгновение постиг все связи между объектами во Вселенной, то он сможет установить соответствующее положение, движения и общие воздействия всех этих объектов в любое время в или прошлом в будущем ». Этот его подход был очень похож на известные слова Архимеда: «Дайте мне точку опоры, и я переверну весь мир». Таким образом, Лаплас и его сторонники говорили, что для точного прогнозирования погоды необходимо только собрать больше информации о всех частицы во Вселенной, их местоположении, скорости, массе, направлении движения, ускорении и т.п. Лаплас полагал, чем больше человек будет знать, тем точнее будет его прогноз относительно будущего. Второй подход к возможности прогнозирования погоды раньше всех наиболее четко сформулировал другой французский математик, Жюль Анри Пуанкаре . В 1903 году он сказал: «Если бы мы точно знали законы природы и положение Вселенной в начальный момент, мы могли бы точно предсказать положение того же Вселенной в последующий момент. Но даже если бы законы природы открыли нам все свои тайны, мы и тогда могли бы знать начальное положение только приближенно. Если бы это позволило нам предсказать последующее положение с тем же приближением, это было бы все, что нам нужно, и мы могли бы сказать, что явление было предсказано, что оно управляется законами. Но это не всегда так может случиться, что малые различия в начальных условиях вызывают очень большие различия в конечном явлении. Малая ошибка в первых породит огромную ошибку в последнем. Предсказание становится невозможным, и мы имеем дело с явлением, развивающийся по воле случая ». В этих словах Пуанкаре мы находим постулат теории хаоса о зависимости от начальных условий. Последующее развитие науки, особенно квантовой механики, опровергло детерминизм Лапласа. В 1927 году немецкий физик Вернер Гейзенберг открыл и сформулировал принцип неопределенности . Этот принцип объясняют, почему некоторые случайные явления не подчиняются лапласовому детерминизму. Гейзенберг показал принцип неопределенности на примере радиоактивного распада ядра. Так, за очень малых размеров ядра невозможно знать все процессы, происходящие внутри него. Поэтому, сколько бы информации мы не собирали о ядре, точно предсказать, когда это ядро распадется невозможно.

Инструменты теории хаоса

Какими же инструментами располагает теория хаоса. В первую очередь это аттракторы и фракталы. Аттрактор (от англ. To attract - притягивать) - геометрическая структура, характеризующая поведение в фазовом пространстве в конце длительного времени. То есть аттрактор - это то, к чему стремится прийти система, к чему она притягивается. Простейшим типом аттрактора является точка. Такой аттрактор характерен для маятника при наличии трения. Независимо от начальной скорости и положения, такой маятник всегда придет в состояние покоя, т.е. в точку. Следующим типом аттрактора является предельный цикл, имеющий вид замкнутой кривой линии. Примером такого аттрактора является маятник, на который не влияет сила трения. Еще одним примером предельного цикла является биение сердца. Частота биения может снижаться и возрастать, однако она всегда стремится к своему аттрактору, своей замкнутой кривой. Третий тип аттрактора - тор. На рисунке 1 тор показан в верхнем правом углу.
Рисунок 1 - Основные типы аттракторов Вверху показаны три предсказуемых, простых аттрактора. Внизу три хаотических аттрактора. Несмотря на сложность поведения хаотических аттракторов, иногда называемых странными аттракторами, знание фазового пространства позволяет представить поведение системы в геометрической форме и соответственно прогнозировать его. И хотя пребывание системы в конкретный момент времени в конкретной точке фазового пространства практически невозможно, область нахождения объекта и его стремление к аттрактору предсказуемы.

Аттрактора Лоренца

Первым хаотической аттрактором стал аттрактора Лоренца.
Рисунок 2 - Хаотический аттрактор Лоренца Аттрактор Лоренца рассчитан на основе всего трех степеней свободы - три обыкновенных дифференциальных уравнения, три константы и три начальных условия. Однако, несмотря на свою простоту, система Лоренца ведет псевдослучайных (хаотическим) образом. Смоделировав свою систему на компьютере, Лоренц выявил причину ее хаотического поведения - разницу в начальных условиях. Даже микроскопическое отклонение двух систем в самом начале в процессе эволюции приводило к экспоненциального накопления ошибок и соответственно их стохастическом разногласия. Вместе с тем, любой аттрактор имеет граничные размеры, поэтому экспоненциальная расхождение двух траекторий разных систем не может продолжаться бесконечно. Рано или поздно орбиты вновь сойдутся и пройдут рядом друг с другом или даже совпадут, хотя последнее очень маловероятно. Кстати, совпадение траекторий является правилом поведения простых предсказуемых аттракторов. Сходимость-расхождение (говорят также, составление и вытягивание соответственно) хаотического аттрактора систематически устраняет начальную информацию и заменяет ее новой. При восхождении траектории сближаются и начинает проявляться эффект близорукости - возрастает неопределенность крупномасштабной информации. При расхождении траекторий наоборот, они расходятся и проявляется эффект дальнозоркости, когда возрастает неопределенность мелкомасштабной информации. В результате постоянной сходимости-расхождения хаотического аттрактора неопределенность стремительно нарастает, что с каждым моментом времени лишает нас возможности делать точные прогнозы. То, чем так гордится наука - способностью устанавливать связи между причинами и следствиями - в хаотических системах невозможно. Причинно-следственной связи между прошлым и будущем в хаосе нет. Здесь же необходимо отметить, что скорость сходимости-расхождения является мерой хаоса, т.е. численным выражением того, насколько система хаотична. Другой статистической мерой хаоса служит размерность аттрактора. Таким образом, можно отметить, что основным свойством хаотических аттракторов является сходимости-расходимость траекторий разных систем, что случайным образом постепенно и бесконечно перемешиваются.

Поделиться