Признаки локального возрастания и убывания функции. Необходимые и достаточные условия существования экстремума функции в точке

Точка экстремума функции - это точка области определения функции , в которой значение функции принимает минимальное или максимальное значение. Значения функции в этих точках называются экстремумами (минимумом и максимумом) функции .

Определение . Точка x 1 области определения функции f (x ) называется точкой максимума функции , если значение функции в этой точке больше значений функции в достаточно близких к ней точках, расположенных справа и слева от неё (то есть выполняется неравенство f (x 0 ) > f (x 0 + Δx ) x 1 максимум.

Определение . Точка x 2 области определения функции f (x ) называется точкой минимума функции , если значение функции в этой точке меньше значений функции в достаточно близких к ней точках, расположенных справа и слева от неё (то есть выполняется неравенство f (x 0 ) < f (x 0 + Δx ) ). В этом случае говорят, что функция имеет в точке x 2 минимум.

Допустим, точка x 1 - точка максимума функции f (x ) . Тогда в интервале до x 1 функция возрастает , поэтому производная функции больше нуля (f "(x ) > 0 ), а в интервале после x 1 функция убывает, следовательно, и производная функции меньше нуля (f "(x ) < 0 ). Тогда в точке x 1

Допустим также, что точка x 2 - точка минимума функции f (x ) . Тогда в интервале до x 2 функция убывает, а производная функции меньше нуля (f "(x ) < 0 ), а в интервале после x 2 функция возрастает, а производная функции больше нуля (f "(x ) > 0 ). В этом случае также в точке x 2 производная функции равна нулю или не существует.

Теорема Ферма (необходимый признак существования экстремума функции) . Если точка x 0 - точка экстремума функции f (x ) , то в этой точке производная функции равна нулю (f "(x ) = 0 ) или не существует.

Определение . Точки, в которых производная функции равна нулю или не существует, называются критическими точками .

Пример 1. Рассмотрим функцию .

В точке x = 0 производная функции равна нулю, следовательно, точка x = 0 является критической точкой. Однако, как видно на графике функции, она возрастает во всей области определения, поэтому точка x = 0 не является точкой экстремума этой функции.

Таким образом, условия о том, что производная функции в точке равна нулю или не существует, являются необходимыми условиями экстремума, но не достаточными, поскольку можно привести и другие примеры функций, для которых эти условия выполняются, но экстремума в соответствующей точке функция не имеет. Поэтому нужно располагать достаточными признаками , позволяющими судить, имеется ли в конкретной критической точке экстремум и какой именно - максимум или минимум.

Теорема (первый достаточный признак существования экстремума функции). Критическая точка x 0 f (x ) , если при переходе через эту точку производная функции меняет знак, причём, если знак меняется с "плюса" на "минус", то точкой максимума, а если с "минуса" на "плюс", то точкой минимума.

Если же вблизи точки x 0 , слева и справа от неё, производная сохраняет знак, то это означает, что функция либо только убывает, либо только возрастает в некоторой окрестности точки x 0 . В этом случае в точке x 0 экстремума нет.

Итак, чтобы определить точки экстремума функции, требуется выполнить следующее :

  1. Найти производную функции.
  2. Приравнять производную нулю и определить критические точки.
  3. Мысленно или на бумаге отметить критические точки на числовой оси и определить знаки производной функции в полученных интервалах. Если знак производной меняется с "плюса" на "минус", то критическая точка является точкой максимума, а если с "минуса" на "плюс", то точкой минимума.
  4. Вычислить значение функции в точках экстремума.

Пример 2. Найти экстремумы функции .

Решение. Найдём производную функции:

Приравняем производную нулю, чтобы найти критические точки:

.

Так как для любых значений "икса" знаменатель не равен нулю, то приравняем нулю числитель:

Получили одну критическую точку x = 3 . Определим знак производной в интервалах, разграниченных этой точкой:

в интервале от минус бесконечности до 3 - знак минус, то есть функция убывает,

в интервале от 3 до плюс бесконечности - знак плюс, то есть функция возрастает.

То есть, точка x = 3 является точкой минимума.

Найдём значение функции в точке минимума:

Таким образом, точка экстремума функции найдена: (3; 0) , причём она является точкой минимума.

Теорема (второй достаточный признак существования экстремума функции). Критическая точка x 0 является точкой экстремума функции f (x ) , если вторая производная функции в этой точке не равна нулю (f ""(x ) ≠ 0 ), причём, если вторая производная больше нуля (f ""(x ) > 0 ), то точкой максимума, а если вторая производная меньше нуля (f ""(x ) < 0 ), то точкой минимума.

Замечание 1. Если в точке x 0 обращаются в нуль и первая, и вторая производные, то в этой точке нельзя судить о наличии экстремума на основании второго достаточного признака. В этом случае нужно воспользоваться первым достаточным признаком экстремума функции.

Замечание 2. Второй достаточный признак экстремума функции неприменим и тогда, когда в стационарной точке первая производная не существует (тогда не существует и вторая производная). В этом случае также нужно вопользоваться первым достаточным признаком экстремума функции.

Локальный характер экстремумов функции

Из приведённых определений следует, что экстремум функции имеет локальный характер - это наибольшее и наименьшее значение функции по сравнению с близлежайшими значениями.

Предположим, вы рассматриваете свои заработки в отрезке времени протяжённостью в один год. Если в мае вы заработали 45 000 рублей, а в апреле 42 000 рублей и в июне 39 000 рублей, то майский заработок - максимум функции заработка по сравнению с близлежайшими значениями. Но в октябре вы заработали 71 000 рублей, в сентябре 75 000 рублей, а в ноябре 74 000 рублей, поэтому октябрьский заработок - минимум функции заработка по сравнению с близлежашими значениями. И вы легко видите, что максимум среди значений апреля-мая-июня меньше минимума сентября-октября-ноября.

Говоря обобщённо, на промежутке функция может иметь несколько экстремумов, причём может оказаться, что какой-либо минимум функции больше какого-либо максимума. Так, для функции изображённой на рисунке выше, .

То есть не следует думать, что максимум и минимум функции являются, соответственно, её наибольшим и наименьшим значениями на всём рассматриваемом отрезке. В точке максимума функция имеет наибольшее значение лишь по сравнению с теми значениями, которые она имеет во всех точках, достаточно близких к точке максимума, а в точке минимума - наименьшее значение лишь по сравнению с теми значениями, которые она имеет во всех точках, достаточно близких к точке минимума.

Поэтому можно уточнить приведённое выше понятие точек экстремума функции и называть точки минимума точками локального минимума, а точки максимума - точками локального максимума.

Ищем экстремумы функции вместе

Пример 3.

Решение.Функция определена и непрерывна на всей числовой прямой. Её производная существует также на всей числовой прямой. Поэтому в данном случае критическими точками служат лишь те, в которых , т.е. , откуда и . Критическими точками и разбивают всю область определения функции на три интервала монотонности: . Выберем в каждой из них по одной контрольной точке и найдём знак производной в этой точке.

Для интервала контрольной точкой может служить : находим . Взяв в интервале точку , получим , а взяв в интервале точку , имеем . Итак, в интервалах и , а в интервале . Согласно первому достаточному признаку экстремума, в точке экстремума нет (так как производная сохраняет знак в интервале ), а в точке функция имеет минимум (поскольку производная при переходе через эту точку меняет знак с минуса на плюс). Найдём соответствующие значения функции: , а . В интервале функция убывает, так как в этом интервале , а в интервале возрастает, так как в этом интервале .

Чтобы уточнить построение графика, найдём точки пересечения его с осями координат. При получим уравнение , корни которого и , т. е. найдены две точки (0; 0) и (4; 0) графика функции. Используя все полученные сведения, строим график (см. в начале примера).

Для самопроверки при расчётах можно воспользоваться онлайн калькулятором производных .

Пример 4. Найти экстремумы функции и построить её график.

Областью определения функции является вся числовая прямая, кроме точки , т.е. .

Для сокращения исследования можно воспользоваться тем, что данная функция чётная, так как . Поэтому её график симметричен относительно оси Oy и исследование можно выполнить только для интервала .

Находим производную и критические точки функции:

1) ;

2) ,

но функция терпит разрыв в этой точке, поэтому она не может быть точкой экстремума.

Таким образом, заданная функция имеет две критические точки: и . Учитывая чётность функции, проверим по второму достаточному признаку экстремума только точку . Для этого найдём вторую производную и определим её знак при : получим . Так как и , то является точкой минимума функции, при этом .

Чтобы составить более полное представление о графике функции, выясним её поведение на границах области определения:

(здесь символом обозначено стремление x к нулю справа, причём x остаётся положительным; аналогично означает стремление x к нулю слева, причём x остаётся отрицательным). Таким образом, если , то . Далее, находим

,

т.е. если , то .

Точек пересечения с осями график функции не имеет. Рисунок - в начале примера.

Для самопроверки при расчётах можно воспользоваться онлайн калькулятором производных .

Продолжаем искать экстремумы функции вместе

Пример 8. Найти экстремумы функции .

Решение. Найдём область определения функции. Так как должно выполняться неравенство , то из получаем .

Найдём первую производную функции.

Признаки локального возрастания и убывания функции.

Одна из основных задач исследования функции — это нахождение промежутков ее возрастания и убывания. Такое исследование легко провести с помощью производной. Сформулируем соответствующие утверждения.

Достаточный признак возрастания функции . Если f’(х) > 0 в каждой точке интервала I, то функция f возрастает на I.

Достаточный признак убывания функции . Если f’(х) < 0 в каждой точке интервала I, то функция f убывает на I.

Доказательство этих признаков проводится на основании формулы Лагранжа (см. п. 19). Возьмем два любых числа х 1 и x 2 из интервала. Пусть x 1 существует число с∈(х 1 , x 2 ), такое, что

(1)

Число с принадлежит интервалу I, так как точки х 1 и x 2 принадлежат I. Если f"(x)>0 для х∈I то f’(с)>0, и поэтому F(x 1 )) — это следует из формулы (1), так как x 2 — x 1 >0. Этим доказано возрастание функции f на I. Если же f’ (x)<0 для х∈I то f"(с)<0, и потому f(x 1 )>f (х 2 ) — следует из формулы (1), так как x 2 —x 1 >0. Доказано убывание функции f на I.

Наглядный смысл признаков ясен из физических рассуждений (рассмотрим для определенности признак возрастания).

Пусть движущаяся по оси ординат точка в момент времени t имеет ординату y = f(t). Тогда скорость этой точки в момент времени t равна f"(t) (см. Мгновенная скорость ). Если f’ (t)>0 в каждый момент времени из промежутка t, то точка движется в положительном направлении оси ординат, т. е. если t 1 ). Это означает, что функция f возрастает на промежутке I.

Замечание 1.

Если функция f непрерывна в каком-либо из концов промежутка возрастания (убывания), то эту точку присоединяют к этому промежутку.

Замечание 2.

Для решения неравенств f" (х)>0 и f" (х)<0 удобно пользоваться обобщением метода интервалов (теоремой Дарбу) : точки, в которых производная равна 0 или не существует, разбивают область определения функции f на промежутки, в каждом из которых f" сохраняет постоянный знак. (Этот факт доказывается в курсах математического анализа.) Знак можно определить, вычислив значение f" в какой-нибудь точке промежутка.

Необходимые и достаточные условия существования экстремума функции в точке.

Необходимое условие экстремума

Функция g(x) в точке имеет экстремум(максимум или минимум), если функция определена в двухсторонней окрестности точки и для всех точек x некоторой области: , выполнено соответственно неравенство

(в случае максимума) или (в случае минимума).

Экстремум функции находиться из условия: , если производная существует, т.е. приравниваем первую производную функции к нулю.

Достаточное условие экстремума

1) Первое достаточное условие :

а) f(x) непрерывная функция и определена в некоторой окрестности точки такой, что первая производная в данной точке равна нулю или не существует.

б) f(x) имеет конечную производную в окрестности задания и непрерывности функции

в) производная сохраняет определенный знак справа от точки и слева от этой же точки, тогда точку можно охарактеризовать следующим образом

Это условие не очень удобное, так как нужно проверять множество условий и запоминать таблицу, однако если ничего не сказано о производных высших порядках, то это единственный способ найти экстремум функции.

2) Второе достаточное условие

Если функция g(x) обладает второй производной причем в некоторой точкепервая производная равна нулю, а вторая производная отлично от нуля. Тогда точкаэкстремум функции g(x), причем если , то точка является максимумом; если , то точка является минимумом.

Первый достаточный признак экстремума формулируется на основе изменения знака первой производной при переходе через критическую точку. О втором признаке экстремума речь пойдёт ниже в § 6.4.

Теорема (первый признак экстремума) : Если х 0 – критическая точка функции у= f (x ) и в некоторой окрестности точки х 0 , переходя через неё слева направо, производная меняет знак на противоположный, то х 0 является точкой экстремума. Причём, если знак производной меняется с «+» на «-», то х 0 – точка максимума, а f (x 0 ) – максимум функции, а если производная меняет знак с «-» на «+», то х 0 – точка минимума, а f (x 0 ) – минимум функции.

Рассмотренный экстремум носит локальный (местный) характер и касается некоторой малой окрестности критической точки.

Точки экстремума и точки разрыва делят область определения функции на интервалы монотонности.

Пример 6.3. В примере 6.1. мы нашли критические точки х 1 =0 и х 2 =2.

Выясним, действительно ли в этих точках функция у=2х 3 -6х 2 +1 имеет экстремум. Подставим в её производную
значениях , взятые слева и справа от точки х 1 =0 в достаточно близкой окрестности, например, х=-1 и х=1 . получим . Так как производная меняет знак с «+» на «-», тох 1 =0 – точка максимума, а максимум функции
. Теперь возьмем два значения х=1 их=3 из окрестности другой критической точки х 2 =2 . Уже показано, что
, а
. Так как производная меняет знак с «-» на «+», тох 2 =2 – точка минимума. А минимум функции
.

Чтобы найти наибольшее и наименьшее значение функции непрерывной на отрезке
нужно вычислить её значение во всех критических точках и на концах отрезка, а затем выбрать из них наибольшее и наименьшее
.

6.3. Признаки выпуклости и вогнутости графика функции. Точки перегиба

График дифференцируемой функции называется выпуклым на интервале, если он расположен ниже любой своей касательной на том интервале; вогнутым (выпуклым вниз) , если он расположен выше любой касательной на интервале .

6.3.1. Необходимые и достаточные признаки выпуклости и вогнутости графика

а) Необходимые признаки

Если график функции у= f (x ) выпуклый на интервале (a , b ) , то вторая производная
на этом интервале; если график
вогнутый на (a , b ) , то
на
(a , b ) .

Пусть график функцииу= f (x ) выпуклый (a , b ) (рис.6.3а). Если касательная скользит вдоль выпуклой кривой слева направо, то её угол наклона убывает (
), вместе с тем убывает и угловой коэффициент касательной, а значит, убывает первая производная
на(a , b ) . Но тогда производная первой производной как производная убывающей функции должна быть отрицательной, то есть
на(a , b ) .

Если график функции вогнутый на (a , b ) , то, рассуждая аналогично, видим, что при скольжении касательной вдоль кривой (рис. 6.3б) угол наклона касательной возрастает (
), возрастает вместе с ним и угловой коэффициент, а значит и производная. И тогда производная от производной как возрастающей функции должна быть положительной, то есть
на(a , b ) .

б) Достаточные признаки

Если для функции у= f (x ) во всех точках некоторого интервала будет
, то график функции
вогнутый на этом интервале, а если
, то
выпуклый .

«Правило дождя» : Чтобы запомнить какой знак второй производной связывать с выпуклой, а какой с вогнутой дугой графика, рекомендуем запомнить: «плюс вода» в вогнутой луночке, «минус вода» - в выпуклой луночке (рис. 6.4).

Точка графика непрерывной функции, в которой изменяется выпуклость на вогнутость или наоборот, называется точкой перегиба .

Теорема (достаточный признак существования точки перегиба).

Если в точке функция
дважды дифференцируема и вторая производная в этой точке равна нулю или не существует, и если при переходе через точкувторая производная
меняет знак, то точкаесть точка перегиба. Координаты точки перегиба
.

Точки, в которых вторая производная обращается в нуль или не существует, называются критическими точками второго рода.

Пример 6.4. Найти точки перегиба и определить интервалы выпуклости и вогнутости кривой
(кривая Гаусса).

Решение. Находим первую и вторую производные:
,. Вторая производная существует при любых. Приравниваем ее нулю и решим полученное уравнение
, где
, тогда
, откуда
,
- критические точки второго рода. Проверим смену знака второй производной при переходе через критическую точку
. Если
, например,
, то
, а если
, например,
, то
, то есть, вторая производная меняет знак. Следовательно,
- абсцисса точки перегиба, ее координаты
. Ввиду четности функции
, точка
, симметричная точке
, тоже будет точкой перегиба.


Необходимый признак экстремума можно сформулировать и так: если точка M (x 0 , y 0 ) является точкой локального экстремума диффе­ренцируемой функции z = f (x , y ), то вектор градиента этой функции в этой точке будет нулевым вектором, т.е. .

Точки, в которых частные производные первого порядка функции двух переменных равны нулю, называются стационар­ными точками.

Для формулировки достаточного признака экстремума функции двух переменных нам понадобится матрица дифференциала второго порядка этой функции, записанного в виде квадратичной формы:

А также определитель этой матрицы, который можно записать в следующем виде:

Достаточный признак экстремума

Замечание. Если в стационарной точке М : Δ = АВ С 2 = 0, то наличие экстремума возможно, но для этого требуется проведение дополнительных исследований.

ПРИМЕР: Найти экстремумы функции

Вычислим частные производные первого и второго порядка данной функции:

Для нахождения стационарных точек приравняем к нулю частные производные первого порядка и получим систему уравнений:

или:

Решая эту систему, получим две стационарные точки М (0, 0) и N (1, 1/2).

Для выяснения наличия экстремумов и их характеров в этих точках вычислим значения частных производных второго порядка последовательно в каждой точке.

Для стационарной точки М (0, 0) получим:

Поскольку: Δ = АВ С 2 = - 36 < 0, в этой стационарной точке экстре­му­ма нет.

Для стационарной точки N (1, 1/2) получим:

Поскольку Δ = АВ С 2 = 108 > 0 и A = 6 > 0, заключаем, что в этой стационарной точке будет локальный минимум данной функции. Причем значение функции в точке минимума будет равно 0.

Метод наименьших квадратов

В практических приложениях, в том числе и экономических, часто возникает задача сглаживания некоторых экспериментально полученных зависи­мостей. То есть задача по возможности точно отразить общую тенденцию зависимости y от x , исключив случайные отклонения от этой общей тенденции, обусловленные неизбежными погрешностями экспериментальных или статисти­ческих данных. Такую сглаженную зависимость обычно ищут в виде формулы. При этом формулы, служащие для аналитического представления зависимостей опытных или экспериментальных данных, принято называть эмпирическими.

Задача поиска подходящей эмпирической формулы обычно разбивается на два основных этапа. На первом этапе устанавливают, или выбирают, общий вид такой зависимости y = f (x ), т.е. решают, является ли данная зависимость линейной, квадратич­ной, показательной, логарифмической и т.д. При таком выборе часто привлекаются дополнительные соображения, как правило, нематематического характера. На втором этапе находят неизвестные параметры выбранной эмпирической функции, используя только массив экспериментально получен­ных данных.

Согласно наиболее распространенному и теоретически обоснованному методу наименьших квадратов в качестве неизвестных параметров эмпиричес­кой функции f (x ) выбирают такие значения, чтобы сумма квадратов “невязок” δ i (отклонений “теоретических” значений функции от экспериментально полу­ченных значений) была бы минимальной, т.е.:

где и - экспериментальные данные, а n – общее количество пар этих данных.

Рассмотрим простейшую задачу такого рода. Пусть в качестве эмпири­чес­кой функции выбрана линейная функция, т.е. (рис. 22), и необ­ходимо найти такие значения параметров a и b , которые доставят минимум функции: .

Очевидно, функция будет функцией двух переменных a и b до тех пор, пока не найдены и не зафиксированы их “наилучшие” значе­ния, поскольку все и есть постоянные числа, найденные экспериментально. Поэтому для нахождения параметров прямой, наилучшим образом согласован­ной с опытными данными, достаточно решить систему уравнений:

После соответствующих вычислений производных и тождест­венных преобразований эта система может быть пред­став­­лена в виде системы нормальных уравнений :

Эта система линейных уравнений имеет единственное решение, которое может быть найдено по правилу Крамера:

;

Таким образом, наилучшим линейным приближением экспериментальной зависимости по методу наименьших квадратов будет являться прямая .

ПРИМЕР: Зависимость между прибылью предприятия Y и стои­мостью основных фондов Х , выраженных в условных единицах, задается таблицей.

Х
Y

Для выяснения вида эмпирической формулы связи построим график экспериментальной зависимости (кружки на рис. 23). По расположению экспериментальных точек на графике можно предположить, что зависимость между Х и Y является линейной, т.е. имеет вид:

Для определения числовых значений параметров а и b проведем расчет коэффициентов системы нормальных уравнений, а для удобства сведем вычисления в таблицу.

По данным таблицы:

Подставляя найденные значения (с учетом того, что n = 7) в формулы для расчета параметров а и b , найдем:

Таким образом, эмпирическая зависимость имеет вид (на рис. 23 изображена сплошной прямой): y = 0,557x – 5,143.

ВОПРОСЫ для самоконтроля знаний по теме 6:

1. Задает ли уравнение функцию нескольких переменных?

Функция y = f(x) называется возрастающей (убывающей ) в некотором интервале, если при x 1 < x 2 выполняется неравенство (f(x 1) < f (x 2) (f(x 1) > f(x 2)).

Если дифференцируемая функция y = f(x) на отрезке возрастает (убывает), то ее производная на этом отрезке f " (x) > 0

(f " (x) < 0).

Точка x о называется точкой локального максимума (минимума ) функции f(x), если существует окрестность точки x о , для всех точек которой верно неравенство f(x) ≤ f(x о) (f(x) ≥ f(x о)).

Точки максимума и минимума называются точками экстремума , а значения функции в этих точках - ее экстремумами.

Необходимые условия экстремума . Если точка x о является точкой экстремума функции f(x), то либо f " (x о) = 0, либо f (x о) не существует. Такие точки называют критическими, причем сама функция в критической точке определена. Экстремумы функции следует искать среди ее критических точек.

Первое достаточное условие. Пусть x о - критическая точка. Если f " (x) при переходе через точку x о меняет знак плюс на минус, то в точке x о функция имеет максимум, в противном случае - минимум. Если при переходе через критическую точку производная не меняет знак, то в точке x о экстремума нет.

Второе достаточное условие. Пусть функция f(x) имеет производную
f " (x) в окрестности точки x о и вторую производную в самой точке x о . Если f " (x о) = 0, >0 ( <0), то точка x о является точкой локального минимума (максимума) функции f(x). Если же =0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие производные.

На отрезке функция y = f(x) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка .

Исследование условий и построение графиков.

Найти область определения функции

Найти точки пересечения графика с осями координат

Найти интервалы знака постоянства

Исследовать на четность, нечетность

Найти асимптоты графика функции

Найти интервалы монотонности функции

Найти экстремумы функции

Найти интервалы выпуклости и точки перегиба

Асимптоты графиков функций. Общая схема исследования и построения графиков функции. Примеры.

Вертикальная

Вертикальная асимптота - прямая вида при условии существования предела .

Как правило, при определении вертикальной асимптоты ищут не один предел, а два односторонних (левый и правый). Это делается с целью определить, как функция ведёт себя по мере приближения к вертикальной асимптоте с разных сторон. Например:

Замечание: обратите внимание на знаки бесконечностей в этих равенствах.

[править]Горизонтальная

Горизонтальная асимптота - прямая вида при условии существования предела

.

[править]Наклонная

Наклонная асимптота - прямая вида при условии существования пределов

Пример наклонной асимптоты

1.

Замечание: функция может иметь не более двух наклонных(горизонтальных) асимптот!

Замечание: Если хотя бы один из двух упомянутых выше пределов не существует (или равен ), то наклонной асимптоты при (или ) не существует!

Связь между наклонной и горизонтальной асимптотами

Если при вычислении предела , то очевидно, что наклонная асимптота совпадает с горизонтальной. Какова же связь между этими двумя видами асимптот?

Дело в том, что горизонтальная асимптота является частным случаем наклонной при , и из выше указанных замечаний следует, что

1. Функция имеет или только одну наклонную асимптоту, или одну вертикальную асимптоту, или одну наклонную и одну вертикальную, или две наклонных, или две вертикальных, либо же вовсе не имеет асимптот.

2. Существование указанных в п. 1.) асимптот напрямую связано с существованием соответствующих пределов.

График функции с двумя горизонтальными асимптотами

]Нахождение асимптот

Порядок нахождения асимптот

1. Нахождение вертикальных асимптот.

2. Нахождение двух пределов

3. Нахождение двух пределов :

если в п. 2.), то , и предел ищется по формуле горизонтальной асимптоты, .



Поделиться