Особые названия соединений элементов 3 главной группы. Общая характеристика р-элементов III группы

В IA группу (главная подгруппа первой группы) таблицы Менделеева вхо­дят металлы — литий Li, натрий Na, калий К, рубидий Rb, цезий Cs и франций Fr. Традиционно, данные элементы называют щелочными металлами (ЩМ), так как их простые вещества образуют при взаимодействии с водой едкие щелочи. Последний из известных представителей группы щелочных металлов (Fr) является радио­активным элементом, в связи с чем его химические свойства изучены недостаточно: период полураспада его наиболее долгоживущего изотопа 223 Fr составляет всего лишь около 22 мин.

Электронные формулы, а также некоторые свойства щелочных металлов представлены в таблице ниже:

Свойство Li Na К Rb Cs Fr
Заряд ядра Z 3 11 19 37 55 87
2s1 3s1 [Аr]4s1 5s1 [Хе]6s1 7s1
0,152 0,186 0,227 0,248 0,265 0,270
Ионный радиус r ион *, нм 0,074 0,102 0,138 0,149 0,170 0,180
Радиус гидратированного иона,r ион, нм 0,340 0,276 0,232 0,228 0,228 -
Энергия ионизации, кДж/моль: I 1 I 2 520,2 7298 495,8 4562 418,8 3052 403,0 2633 375,7 2234 (380) (2100)
Электроотрицательность 0,98 0,93 0,82 0,82 0,79 0,70

При движении вниз по IA группе возрастает радиус атомов металлов (r мет), что, собственно, характерно для любых элементов всех главных подгрупп. Относительно малое увеличение радиуса при переходе от K к Rb и далее к Cs обусловлено заполнением 3d- и 4d-подуровней соответственно.

Ионные радиусы ЩМ существенно меньше металлических, что связано с потерей единственного валентного электрона. Они также зако­номерно возрастают от Li + к Cs + . Размеры же гидратированных катионов изме­няются в противоположном направлении, что объясняется в рамках простей­шей электростатической модели. Наименьший по размеру ион Li + лучше катионов остальных щелочных металлов притягивает к себе полярные молекулы воды, образуя наиболее толстую гидратную оболочку. Исследования показали, что в водном растворе катион лития Li + окружен 26 моле­кулами воды, из которых только 4 находятся в непосредственном контакте с ионом лития (первой координационной сфере). По этой причине многие соли лития, например, хлорид, перхлорат и сульфат, а также гидроксид выделяются из водных растворов в виде кристаллогидратов. Хлорид LiCl·Н 2 O теряет воду при температуре 95 °С, LiOH·Н 2 O - при 110°С, а LiClO 4 ·Н 2 O - только при температуре выше 150°С. С увеличением ионного радиуса катиона щелочного металла сила его электростатического взаимодействия с молекулами воды ослабевает, что приводит к снижению толщины гидратной оболочки и, как следствие, радиуса гидратированного иона [М(Н 2 O) n ] (где n = 17, 11, 10, 10 для М + = Na + , К + , Rb + , Cs + соответственно).

Внешний энергетический уровень атома ЩМ содержит один единственный электрон, который слабо связан с ядром, о чем говорят низкие значения энер­гии ионизации I 1 . Атомы щелочных металлов легко ионизируются с образова­нием катионов М + , входящих в состав практически всех химических соединений этих элементов. Значения I 2 для всех щелочных металлов настолько высоки, что в реально осуществимых условиях ион М 2+ не образуется. Электроотрицатель­ность щелочных элементов мала, их соединения с наиболее электроотрица­тельными элементами (хлор, кислород, азот)имеют ионное строение, как минимум в кристаллическом состоянии.

Маленький радиус иона Li + и высокая плотность заряда, являются причиной того, что соединения лития оказываются схожими по свойствам аналогичным соединениям магния (диагональное сходство) и в то же время отличаются от соединений остальных ЩМ.

Элементы IIA группы

В IIA группу Периодической системы элементов входят бериллий Ве, магний Мg и четыре щелочноземельных металла (ЩЗМ): кальций Са, стронций Sr, барий Ва и радий Ra, оксиды которых, раньше называемые «землями», при взаимодействии с водой образуют щелочи. Радий - радиоактивный элемент (α-распад, период полураспада примерно 1600 лет).

Электронная конфигурация и некоторые свойства элементов второй группы приведены в таблице ниже.

По электронному строению атомов элементы второй группы близки щелочным металлам. Они имеют конфигурацию благородного газа, дополненную

Свойство Be Mg Ca Sr Ba Ra
Заряд ядра Z 4 12 20 38 56 88
Электронная конфигурация в основном состоянии 2s 2 3s 2 4s 2 5s 2 6s 2 7s 2
Металлический радиус r мет, нм 0,112 0,160 0,197 0,215 0,217 0,223
Ионный радиус r ион *, нм 0,027 0,72 0,100 0,126 0,142 0,148
Энергия ионизации, кДж/моль: 899,5 1757 14850 737,7 1451 7733 589,8 1145 4912 549,5 1064 4138 502,8 965 3619 509,3 979 3300
Электроотрицательность 1,57 1,31 1,00 0,95 0,89 0,90

двумя s-электронами на внешнем уровне. В то же время от элементов первой группы они отличаются более высокими значениями энергии ионизации, убывающими в ряду Ве-Мg-Са-Sr- Ва. Эта тенденция нарушается при переходе от бария к радию: повышениe П и І, для Rа по сравнению с Ва объясняется эффектом инертной 6s 2 -пары.

Следует отметить, что в то время как для щелочных металлов характерна значительная разница между I 1 и I 2 для элементов второй группы подобный скачок наблюдается между I 2 и I 3 . Именно поэтому щелочные металлы в сложных веществах проявляют только степень окисления +1, а элементы второй группы +2. Наличие единственной положительной степени окисления и невозможность восстановления ионов M 2+ в водной среде придает большое сходство всем металлам s-блока.

Изменение свойств по группе следует общим закономерностям, рассмотренным на примере щелочных металлов. Элемент второго периода бериллий, подобно элементу первой группы литию, значительно отличается по своим свойствам от других элементов второй группы. Так, ион Be 2+ благодаря чрезвычайно малому ионному радиусу (0,027 нм), высокой плотности заряда, большим значениям энергий атомизации и ионизации оказывается устойчивым лишь в газовой фазе при высоких температурах. Поэтому химическая связь в бинарных соединениях бериллия даже с наиболее электроотрицательными элементами (кислород, фтором) обладает высокой долей ковалентности. Химия водных растворов бериллия также имеет свою специфику: в первой координационной сфере бериллия могут находиться лишь четыре лиганда ( 2+ , (Bе(OH) 4 ] —), что связано с малым ионным радиусом металла и отсутствием d-орбиталей.

Щелочноземельные металлы (Са, Sr, Ва, Ra) образуют единое семейство элементов, в пределах которого некоторые свойства (энергия гидратации, растворимость и термическая устойчивость солей) меняются монотонно с увеличением ионного радиуса, а многие их соединения являются изоморфными.

Элементы IIIA группы

Элементы IIIA группы: бор В, алюминий Al, галлий Ga, индий In и таллий Tl - имеют мало стабильных изотопов, что характерно для атомов с нечетными порядковыми номерами. Электронная конфигурация внешнего энергетического уровня в основном состоянии ns 2 nр 1 характеризуется наличием одного неспаренного электрона. В возбужденном состоянии элементы IIIA группы содержат три неспаренных электрона, которые, находясь в sp 2 -гибридизации, принимают участие в образовании трех ковалентных связей. При этом у атомов остается одна незанятая орбиталь. Поэтому многие ковалентные соединения элементов IIIA группы являются акцепторами электронной пары (кислоты Льюиса), т.е. могут образовывать четвертую ковалентную связь по донорно-акцепторному механизму, создавая которую, они изменяют геометрию своего окружения - она из плоской становится тетраэдрической (состояние sp 3 -гибридизации). Бор сильно отличается по свойствам от других элементов IIIA группы. Он является единственным неметаллом, химически инертен и образует ковалентные связи со фтором, азотом, углеродом и т.д. Химия бора более близка химии кремния, в этом проявляется Диагональное сходство. У атомов алюминия и его тяжелых аналогов появляются вакантные d-орбитали, возрастает радиус атома. Галлий, индий и таллий расположены в Периодической системе сразу за металлами d-блока, поэтому их часто называют постпереходными элементами. Заполнение d-оболочки сопровождается последовательным сжатием атомов, в 3d-pяду оно оказывается настолько сильным, что нивелирует возрастание радиуса при появлении четвертого энергетического уровня. В результате d-сжатия ионные радиусы алюминия и галлия близки, а атомный радиус галлия даже меньше, чем алюминия.

Для таллия, свинца, висмута и полония наиболее устойчивы соединения со степенью окисления +1, +2, +3, +4 соответственно.

Для соединений элементов IIIA группы наиболее характерна степень окисления +3. В ряду бор-алюминий-галлий-индий-таллий устойчивость таких соединений уменьшается, а устойчивость соединений со степенью окисления +1, напротив, увеличивается. Энергия связи М-Hal в галогенидах последних при переходе от легких к более тяжелым элементам М уменьшаются, амфотерные свойства оксидов и гидроксидов смещаются в сторону большей основности, склонность катионов к гидролизу (взаимодействию с водой) ослабевает.

Химия индия и особенно галлия вообще очень близка химии алюминия. Соединения этих металлов в низших степенях окисления (Ga 2 O, Ga 2 S, InCl и др.) в водных растворах диспропорционируют. Для таллия состояние +1, напротив, является наиболее устойчивым из-за инертности электронной пары 6s 2 .

Алюминий находится в главной подгруппе III группы периодической системы. На внешнем энергетическом уровне атома алюминия имеются свободные р-орбитали, что позволяет ему переходить в возбужденное состояние. В возбужденном состоянии атом алюминия образует три ковалентные связи или полностью отдает три валентных электрона, проявляя степень окисления +3.

Алюминий является самым распространенным металлом на Земле : его массовая доля в земной коре составляет 8,8%. Основная масса природного алюминия входит в состав алюмосиликатов - веществ, главными компонентами которых являются оксиды кремния и алюминия.

Алюминий - легкий металл серебристо-белого цвета, плавится при 600°C, очень пластичен, легко вытягивается в проволоку и прокатывается в листы и фольгу. По электропроводности алюминий уступает лишь серебру и меди.

Взаимодействие с простыми веществами:

1) с галогенами:

2Al + 3Cl 2 = 2AlCl 3

2) с кислородом:

4Al + 3O 2 = 2Al 2 O 3

3) с серой:

2Al + 3S = Al 2 S 3

4) с азотом:

С водородом алюминий непосредственно не реагирует, но его гидрид AlH3 получен косвенным путем.

Взаимодействие со сложными веществами:

1) с кислотами:

2Al + 6HCl = 2AlCl 3 + 3H 2

2) со щелочами:

2Al + 2NaOH + 6H 2 O = 2Na + 3H 2

Если NaOH в твердом состоянии:

2Al + 2NaOH + 6H2O = 2NaAlO 2 + 3H 2

3) с водой:

2Al + 6H2O = 2Al(OH) 3 + 3H2

Свойства оксида и гидроксида алюминия: оксид алюминия, или глинозем, Al 2 O 3 представляет собой белый порошок. Оксид алюминия можно получить, сжигая металл или прокаливая гидроксид алюминия:

2Al(OH)3 = Al 2 O 3 + 3H 2 O

Оксид алюминия практически не растворяется в воде. Соответствующий этому оксиду гидроксид Al(OH) 3 получают действием гидроксида аммония или растворов щелочей, взятых в недостатке, на растворы солей алюминия:

AlCl 3 + 3NH 3 · H2O = Al(OH)3 + 3NH4Cl

Оксид и гидроксид этого металла являются амфотерными, т.е. проявляют как основные, так и кислотные свойства.

Основные свойства:

Al 2 O 3 + 6HCl = 2AlCl 3 + 3H 2 O

2Al(OH) 3 + 3H 2 SO 4 = Al 2 (SO 4) 3 + 6H 2 O

Кислотные свойства:

Al 2 O 3 + 6KOH +3H 2 O = 2K 3

2Al(OH) 3 + 6KOH = K 3

Al 2 O 3 + 2NaOH = 2NaAlO 2 + H 2 O

Алюминий получают электролитическим методом. Он не может быть выделен из водных растворов солей, т.к. является очень активным металлом. Поэтому основным промышленным методом получения металлического алюминия является электролиз расплава, содержащего оксид алюминия и криолит.

Металлический алюминий широко используется в промышленности, по объему производства занимает второе место после железа. Основная масса алюминия идет на изготовление сплавов:


Дуралюмин - сплав алюминия, содержащий медь и небольшое количество магния, марганца и других компонентов. Дуралюмины - легкие прочные и коррозионностойкие сплавы. Используют в авиа- и машиностроении.

Магналин - сплав алюминия с магнием. Используют в авиа- и машиностроении, в строительстве. Стоек к коррозии в морской воде, поэтому его применяют в судостроении. Силумин - сплав алюминия, содержащий кремний. Хорошо подвергается литью. Этот сплав используют в автомобиле-, авиа- и машиностроении, производстве точных приборов. Алюминий - пластичный металл, поэтому из него изготавливают тонкую фольгу, используемую в производстве радиотехнических изделий и для упаковки товаров. Из алюминия делают провода, краски «под серебро».

Таблица 19- Характеристика элементов 3Ап/группы

Алюминий находится в главной подгруппе III группы Периодической таблицы. Атомы элементов подгруппы в основном состоянии имеют следующее строение внешней электронной оболочки: ns 2 np 1 . На внешнем энергетическом уровне атомов имеются свободные р-орбитали, что позволяет атомам переходить в возбужденное состояние. В возбужденном состоянии атомы этих элементов образуют три ковалентные связи или полностью отдают три валентных электрона, проявляя степень окисления +3.

Алюминий является самым распространенным металлом на Земле: его массовая доля в земной коре составляет 8,8%. Основная масса природного алюминия входит в состав алюмосиликатов – веществ, главными компонентами которых являются оксиды кремния и алюминия. Алюмосиликаты входят в состав многих горных пород и глин.

Свойства: Al представляет собой серебристо-белый металл, Это легкоплавкий и легкий металл. Он обладает высокой пластичностью, хорошей электро- и теплопроводностью. Al – химически активный металл. Однако его активность в обычных условиях несколько снижается из-за наличия тонкой пленки оксида, которая образуется на поверхности металла при контакте его с воздухом.

1. Взаимодействие с неметаллами. При обычных условиях алюминий реагирует с хлором и бромом:

2Al + 3Cl 2 = 2AlCl 3

При нагревании алюминий взаимодействует со многими неметаллами:

4Al + 3O 2 = 2Al 2 O 3

2Al + 3I 2 = 2AlI 3

2Al + N 2 = 2AlN

4Al + 3C = Al 4 C 3

2. Взаимодействие с водой. Из-за защитной оксидной пленки на поверхности алюминий устойчив в воде. Однако при удалении этой пленки происходит энергичное взаимодействие:

2Al + 6H 2 O = 2Al(OH) 3 + 3H 2

2. Взаимодействие с кислотами. Алюминий взаимодействует с хлороводородной и разбавленной серной кислотами:

2Al + 6HCl = 2AlCl 3 + 3H 2

2Al + 3H 2 SO 4 = Al 2 (SO 4) 3 + 3H 2

Азотная и концентрированная серная кислоты пассивирует алюминий: при действии этих кислот увеличивается толщина защитной пленки на металле, и он не растворяется.



4. Взаимодействие со щелочами. Алюминий взаимодействует с растворами щелочей с выделением водорода и образованием комплексной соли:

2Al + 6NaOH + 6H 2 O = 2Na 3 + 3H 2

5. Восстановление оксидов металлов. Алюминий является хорошим восстановителем многих оксидов металлов:

2Al + Cr 2 O 3 = Al 2 O 3 + 2Cr

8Al + 3Fe 3 O 4 = 4Al 2 O 3 + 9Fe

Оксид и гидроксид алюминия. Оксид алюминия, или глинозем, Al 2 O 3 представляет собой белый порошок. Оксид алюминия можно получить, сжигая металл или прокаливая гидроксид алюминия:

2Al(OH) 3 = Al 2 O 3 + 3H 2 O

Оксид алюминия практически не растворяется в воде. Соответствующий этому оксиду гидроксид Al(OH) 3 получают действием гидроксида аммония или растворов щелочей, взятых в недостатке, на растворы солей алюминия:

AlCl 3 + 3NH 3 ∙ H 2 O = Al(OH) 3 ↓ + 3NH 4 Cl

Оксид и гидроксид этого металла являются амфотерными, т.е. проявляют как основные, так и кислотные свойства.

Основные свойства :

Al 2 O 3 + 6HCl = 2AlCl 3 + 3H 2 O

2Al(OH) 3 + 3H 2 SO 4 = Al 2 (SO 4) 3 + 6H 2 O

Кислотные свойства:

Al 2 O 3 + 6KOH +3H 2 O = 2K 3

2Al(OH) 3 + 6KOH = K 3

Al 2 O 3 + 2NaOH = 2NaAlO 2 + H 2 O

Производство. Алюминий получают электролитическим методом. Он не может быть выделен из водных растворов солей, т.к. является очень активным металлом. Поэтому основным промышленным методом получения металлического алюминия является электролиз расплава, содержащего оксид алюминия и криолит.

Применение. Металлический алюминий широко используется в промышленности, по объему производства занимает второе место после железа. Основная масса алюминия идет на изготовление сплавов:

Дуралюмин – сплав алюминия, содержащий медь и небольшое количество магния, марганца и других компонентов. Дуралюмины – легкие прочные и коррозионностойкие сплавы. Используют в авиа- и машиностроении.

Магналин – сплав алюминия с магнием. Используют в авиа- и машиностроении, в строительстве. Стоек к коррозии в морской воде, поэтому его применяют в судостроении.

Силумин – сплав алюминия, содержащий кремний. Хорошо подвергается литью. Этот сплав используют в автомобиле-, авиа- и машиностроении, производстве точных приборов.

Алюминий – пластичный металл, поэтому из него изготавливают тонкую фольгу, используемую в производстве радиотехнических изделий и для упаковки товаров. Из алюминия делают провода, краски «под серебро».

Задания с профессиональной направленностью

1. Для очистки корнеплодов от кожицы после мойки их обваривают кипящим раствором кальцинированной соды (W = 4%). При избытке соляной кислоты в желудочном соке животных поят раствором питьевой соды. Напишите формулы этих веществ. Назовите другие области применения солей натрия и калия в сельскохозяйственной практике, в быту.

2. Йодид калия широко используют для подкормки животных микроэлементами и для удаления избыточного количества цветков на яблонях. Составьте уравнение реакции получения йодида калия, укажите окислитель и восстановитель.

3. Почему древесную золу (зола содержит в своем составе ионы калия К + и карбонат – ионы СО 3 2-), применяемую для удобрения полей, рекомендуют хранить в закрытых помещениях или под навесом? Напишите уравнения реакций, происходящих в случае увлажнения золы.

4. Слишком большая кислотность почвы оказывает на растение губительное влияние. В этом случае необходимо проводить известкование почвы. Внесение в почву известняка СаСО 3 понижает кислотность. Напишите уравнение реакции протекающей при этом.

5. Кислотность почвы не изменяется от внесения суперфосфата. Однако кислотность суперфосфата, содержащего избыток фосфорной кислоты, вредна для растений. Для его нейтрализации прибавляют СаСО 3 . Прибавить Са(ОН) 2 нельзя, т.к. суперфосфат перейдет в трудно усвояемое растениями соединение. Составьте уравнения соответствующих реакций.

6. Для борьбы с вредителями зерна, плодов и овощей применяется хлор из расчета 35 г на 1 м 3 помещения. Вычислите массу хлорида натрия, достаточного для обработки 300 м 3 помещения хлором, полученным электролизом расплава данной соли.

7. На каждые 100 ц урожая корнеплодов и ботвы сахарной свеклы из почвы выносится примерно 70 кг оксида калия. Какой массой сильвинита КСl · Na Cl, содержащего хлорид калия с массовой долей 0,56, можно компенсировать эти потери?

8. Для подкормки картофеля применяют раствор хлорида калия с массовой долей 0,04. Вычислите массу калийного удобрения (КCl), которая необходима для получения 20 кг такого раствора.

9. При получении питательного раствора для подкормки растений на 400 мл воды берут 1г КNO 3 ,1г МgSO 4 , 1г КН 2 РО 4 , 1г Са(NO 3) 2 . Вычислите массовую долю (в %) каждого вещества в полученном растворе.

10. Для сохранения влажного зерна от гниения его обрабатывают гидросульфатом натрия NaHSO 4 .Вычислите массу гидросульфата натрия, который получается при взаимодействии 120 г гидроксида натрия с раствором серной кислоты.

11. Какое удобрение содержит больше калия: калийная селитра (КNO 3), поташ (К 2 СО 3) или хлористый калий (КСl)?

12. Для предуборочного обезлиствения хлопчатника при его механической уборке применяется цианамид кальция. Найдите формулу этого соединения, зная, что массовые доли кальция, углерода и азота составляют соответственно 0,5; 0,15; 0,35.

13. При анализе древесной золы, применяемой в животноводстве в качестве подкормки для скота, найдено, что в золе массой 70г содержится 18,4 г кальция,0,07г фосфора и 2,3г натрия. Вычислите массовую долю (в %) каждого элемента в указанной подкормке.

14. Сколько известняка, содержащего 90% карбоната кальция, нужно внести на 30 га, если известкование проводить из расчета 4 т СаО на гектар.

15. Имеются: а) чистая аммиачная селитра, б) технический сильвинит, содержащий 33% калия. Смешением этих материалов надо получить одну тонну азотно-калийного удобрения, содержащего 15% азота. Какие количества обоих материалов следует смешать и сколько процентов калия будет содержать такая смесь?

4.9 Раздел: Главные переходные металлы

Цель: Изучить свойства металлов побочных подгрупп и их соединений

Переходные металлы - элементы побочных подгрупп периодической системы.

С увеличением атомной массы усиливается металлический ха­рактер элементов. Бор - неметалл, остальные элементы (подгруппа алюминия) - металлы. Бор значительно отличается по свойствам от остальных элементов и больше похож на углерод и кремний. Остальные элементы - легкоплавкие металлы, In и Тl - чрезвычайно мягкие.

Физические свойства элементов главной подгруппы III группы

Все элементы группы трехвалентны, но с увеличением атомного номера более характерной становится валентность 1 (Тl преимущественно одновалентен).

В ряду В-Аl-Gа-In-Тl уменьшается кислотность и увеличи­вается основность гидроксидов R(ОН) 3 . Н 3 ВО 3 - кислота, Аl(ОН) 3 и Gа(ОН) 3 - амфотерные основания, In(ОН) 3 и Тl(ОН) 3 - типичные основания. ТlOН - сильное основание.

Рассмотрим свойства только двух элементов: под­робно - алюминия, как типичного представителя р-металлов, чрезвычайно широко применяемого на практике, и схематично - бора, как представителя «полуметаллов» и проявляющего ано­мальные свойства по сравнению со всеми другими элементами подгруппы.

Алюминий - самый рас­пространенный металл на Земле (3-е место среди всех элемен­тов; 8% состава земной коры). В виде свободного металла в при­роде не встречается; входит в состав глиноземов (Аl 2 О 3), бокситов (Аl 2 О 3 xН 2 О). Кроме того, алюминий обнаруживается в виде силикатов в таких породах, как глины, слюды и полевые шпаты.

Алюминий имеет единственный стабильный изотоп , бор - два: 19,9% и 80,1%.

Получение;

1. Электролиз расплава AlCl 3:

2AlCl 3 = 2Al + 3Cl 2

2. Основной промышленный способ - электролиз расплава Al 2 O 3 (глинозема) в криолите 3NaF AlF 3:

2Al 2 O 3 = 4AI + 3O 2

3. Вакуумтермический:

AlCl 3 + ЗК = Al + 3KCl

Физические свойства .

Алюминий в свободном виде - се­ребристо-белый металл, обладающий высокой тепло- и электро­проводностью. Алюминий имеет невысокую плотность - при­мерно втрое меньше, чем у железа или меди, и одновременно - это прочный металл.

Бор существует в нескольких аллотропных модификациях. Аморфный бор представляет собой темно-коричневый порошок. Кристаллический бор - серо-черный, с металлическим блеском. По твердости кристаллический бор занимает второе место (после алмаза) среди всех веществ. При комнатной температуре бор пло­хо проводит электрический ток; так же, как кремний, он обладает полупроводниковыми свойствами.

Химические свойства .

Поверхность алюминия обычно по­крыта прочной пленкой оксида Аl 2 О 3 , которая предохраняет его от взаимодействия с окружающей средой. Если эту пленку уда­ляют, то металл может энергично реагировать с водой:

2Аl + 6Н 2 О = 2Аl(ОН) 3 + ЗН 2 .

В виде стружек или порошка он ярко горит на воздухе, выде­ляя большое количество теплоты:

2Аl + 3/2O 2 = Аl 2 О 3 + 1676 кДж.

Это обстоятельство используется для получения ряда металлов из их оксидов методом алюмотермии. Так назвали восстановле­ние порошкообразным алюминием тех металлов, у которых теп­лоты образования оксидов меньше теплоты образования Аl 2 О 3 , например:

Сr 2 О 3 + 2Аl = 2Сr + Аl 2 О 3 + 539 кДж.

Бор , в отличие от алюминия, химически инертен (особенно кристаллический). Так, с кислородом он реагирует только при очень высоких температурах (> 700°С) с образованием борного ангидрида В 2 О 3:

2В + ЗО 2 = 2В 2 О 3 ,

с водой бор не реагирует ни при каких обстоятельствах. При еще более высокой температуре (> 1200°С) он взаимодействует с азо­том, давая нитрид бора (служит для изготовления огнеупорных материалов):

Лишь со фтором бор реагирует при комнатной температуре, реакции же с хлором и бромом протекают только при сильном нагревании (400 и 600 °С соответственно); во всех этих случаях он образует тригалогениды ВНal 3 - дымящие на воздухе лету­чие жидкости, легко гидролизующиеся водой:

2В + 3Наl 2 = 2ВНаl 3 .

В результате гидролиза образуется ортоборная (борная) кислота H 3 BO 3:

ВНаl 3 + 3Н 2 О = Н 3 ВО 3 + ЗННаl.

В отличие от бора, алюминий уже при комнатной температуре активно реагирует со всеми галогенами, образуя галогениды. При нагревании он взаимодействует с серой (200 °С), азотом (800 °С), фосфором (500 °С) и углеродом (2000 °С):

2Аl + 3S = Аl 2 S 3 (сульфид алюминия),

2Аl + N 2 = 2АlN (нитрид алюминия),

Аl + Р = АlР (фосфид алюминия),

4Аl + 3С = Аl 4 С 3 (карбид алюминия).

Все эти соединения полностью гидролизуются с образованием гидроксида алюминия и, соответственно, сероводорода, аммиака, фосфина и метана.

Алюминий легко растворяется в соляной кислоте любой кон­центрации:

2Аl + 6НСl = 2АlСl 3 + ЗН 2 .

Концентрированные серная и азотная кислоты на холоде не действуют на алюминий. При нагревании алюминий способен восстанавливать эти кислоты без выделения водорода:

2Аl + 6Н 2 SО 4(конц) = Аl 2 (SО 4) 3 + 3SО 2 + 6Н 2 О,

Аl + 6НNO 3(конц) = Аl(NO 3) 3 + 3NO 2 + 3Н 2 О.

В разбавленной серной кислоте алюминий растворяется с вы­делением водорода:

2Аl + 3Н 2 SО 4 = Аl 2 (SО 4) 3 + 3Н 2 .

В разбавленной азотной кислоте реакция идет с выделением оксида азота (II):

Аl + 4HNО 3 = Аl(NО 3) 3 + NO + 2Н 2 О.

Алюминий растворяется в растворах щелочей и карбонатов щелочных металлов с образованием тетрагидроксоалюминатов:

2Аl + 2NаОН + 6Н 2 О = 2Na[Аl(ОН) 4 ] + 3Н 2 .

Кислоты, не являющиеся окислителями, с бором не реагируют и только концентрированная HNO 3 окисляет его до борной кис­лоты:

В + HNO 3(конц) + Н 2 О = Н 3 ВO 3 + NO

Соединения со степенью окисления +3. Важнейшими соединениями бора являются гидриды, галогениды, оксид, борные кислоты и их соли.

Оксид бора - B 2 O 3 - бесцветная хрупкая стеклообразная масса, кислотный оксид, энергично присоединяет воду с образованием ортоборной кислоты:

B 2 O 3 + 3H 2 O = 2H 3 BO 3

H 3 BO 3 - очень слабая одноосновная кислота, причем ее кислотные свойства проявляются не за счет отщепления катиона водорода, а за счет связывания гидроксид-аниона:

H 3 BO 3 + H 2 O H + + - ; рК а = 9,0

При нагревании борная кислота ступенчато теряет воду, образуя вначале метаборную кислоту, а затем оксид бора:

H 3 BO 3 ¾® HBO 2 ¾® B 2 O 3

При взаимодействии со щелочами образует тетрабораты - соли гипотетической тетраборной кислоты:

4H 3 BO 3 + 2NaOH = Na 2 B 4 O 7 + 7H 2 O

Большинство солей – боратов – в воде нерастворимы, исключение составляют бораты s-элементов. Более других используется тетраборат натрия Na 2 B 4 O 7 . В большинстве своем бораты полимерны, выделяются из растворов в виде кристаллогидратов. Полимерных борных кислот из раствора выделить не удается, в связи с тем, что они легко гидратируются. Поэтому при действии кислот на полибораты обычно выделяется борная кислота (эта реакция используется для получения кислоты):

Na 2 B 4 O 7 + H 2 SO 4 + 5H 2 O = 4H 3 BO 3 + Na 2 SO 4

Безводные метабораты получают сплавлением оксида бора или борной кислоты с оксидами металлов:

CaO + B 2 O 3 = Ca(BO 2) 2

Важнейшими соединениями алюминия является алюминий оксид и алюминий гидроксид.

Алюминий оксид Al2O3 - белая тугоплавкая кристаллической вещество, нерастворимое в воде. В лабораторных условиях алюминий оксид добывают сжигание алюминия или термическими разложением алюминий гидроксида:

4Al + 3O2 → 2Al2O3

2Al (OH) 3→ Al2O3 + 3H2O.

По химическим свойствам алюминий оксид являются амфотерными. Он реагирует с кислотами, проявляя свойства основных оксидов:

Al2O3 + 6HCl = 2AlCl3 + 3H2O.

Реагируйте со щелочами, он проявляет свойства кислотных оксидов. В растворах щелочей образуются комплексные соединения:

Al2O3 + 2KOH + 3H2O = 2K .

При сплавления образуются соли метаалюминиевой кислоты, например, метаалюминат калия:

Al2O3 + 2KOH→2KAlO2 + H2O.

Естественную кристаллическую модификацию алюминий оксида (корунд) применяются в РАЗЛИчНЫХ областях науки и производства. Рубины, например, является материалом для изготовления рабочих камней точных механизмов. Кристаллы корунда - рабочие тела лазеров. Рубины и сапфиры используют для отделки ювелирных изделий. Алюминий оксид является главной составляющей наждака - абразивного материала. Тугоплавкость и коррозионная стойкость алюминий оксида предопределяет его применение для изготовления термостойких химической посуды, кирпича для кладки стекловаренных печей.

Алюминий гидроксид Al (OH) 3 - это нерастворимые в воде кристаллической вещество белого цвета. В лаборатории алюминий гидроксид добывают из растворимых солей алюминия при их взаимодействии с растворами щелочей, например:

AlCl3 + 3КOH = Al (OH) 3 ↓+ 3КCl.

Полученный алюминий гидроксид имеет вид студенистого осадка.

Алюминий гидроксид проявляет амфотерные свойства и растворяется как в кислотах, так и в щелочах:

Al (OH) 3 + 3HCl →AlCl3 + 3H2O

Al (OH) 3 + NaOH → Na .

При сплавления алюминий гидроксида с натрий гидроксидом образуется натрий метаалюминат:

Al (OH) 3 + NaOH→ NaAlO2 + 2H2O.

Способность алюминий гидроксида реагировать с кислотами используют в терапии. Он входит в состав лекарственных препаратов, Которые используются для снижения кислотности и уменьшение изжоге.

Реакция с хлоридом бария. Борат-ионы при взаимодействии с хлоридом бария в водных растворах образуют белый кристаллический осадок метабората бария Ba(BO 2) 2

Аналитические реакции катиона алюминия Al 3+

1. Реакция с щелочами:

А1 3+ + 3 ОН→А1(ОН) 3 ↓ (белый)

2. Реакция с нитратом кобальта - образование -тенаровой сини.

Тенаровая синь- - смешанный оксид алюминия и кобальта синего цвета.

2 A1 2 (SO 4) 3 + 2 Co(NO 3) 2 -tT-> 2 Со(А1О 2) 2 + 4 NO 2 + 6 SO 3 + O 2 .

Бор относится к примесным микроэлементам, его массовая доля в организме человека составляет 10-5 %. Бор концентрируется главным образом в легких (0,34 мг), щитовидной железе (0,30 мг), селезенке (0,26 мг), печени, мозге (0,22 мг), почках, сердечной мышце (0,21 мг). Биологическое действие бора еще недостаточно изучено. Известно, что бор входит в состав зубов и костей, очевидно, в виде труднорастворимых солей борной кислоты с катионами металлов.

8950 0

В 14 группу входят C, Si, Ge, Sn, Pb (табл. 1 и 2). Как и элементы 3А подгруппы, это p -элементы со сходной электронной конфигурацией внешней оболочки - s 2 p 2 . При перемещении вниз по группе атомный радиус возрастает, вызывая ослабление свзяи между атомами. Из-за усиливающейся делокализации электронов внешних атомных оболочек в этом же направлении возрастает электропроводность, поэтому свойства элементов изменяются от неметаллических к металлическим. Углерод (С ) в форме алмаза является изолятором (диэлектриком), Si и Ge - полуметаллы, Sn и Pb - металлы и хорошие проводники.

Таблица 1. Некоторые физические и химические свойства металлов 14 группы


Название

Относит, ат. масса

Электронная формула

Радиус, пм

Основные изотопы (%)

Углерод Carbon [от лат. carbo — уголь]

ковалентный 77 при двойной связи 67, при тройной связи 60

14 С (следы)

Кремний Silicon [от лат. silicis — кремень]

атомный 117,

ковалентный 117

Германий Germanium [от лат. Germania — Германия]

3d 10 4s 2 4p 2

атомный 122,5,

ковалентный 122

Олово Tin [от англо-сакс. tin, лат. stannum]

4d 10 5s 2 5p 2

атомный 140,5,

ковалентный 140

Свинец Lead [от англо-сакс. lead, лат. plumbum]

4f 14 5d 10 6s 2 6р 2

атомный 175,

ковалентный 154

Все элементы этой группы образуют соединения со степенью окисления +4. Устойчивость этих соединений уменьшается при перемещении к нижней части группы, когда как у двухвалентных соединений она, наоборот, при таком перемещении возрастает. Все элементы, кроме Si , образуют также соединения с валентностью +2, что обусловлено «эффектом инертной пары »: втягиванием пары внешних s -элементов во внутреннюю электронную оболочку вследствие худшего экранирования внешних электронов d - и f -электронами по сравнению с s - и р -электронами внутренних оболочек у крупных атомов нижних членов группы.

Свойства элементов этой группы позволили использовать их в качестве противоводорослевых покрытий (ПП) судов. В первых таких покрытиях использовали Pb , затем стали применять Sn (в виде бис-трибутилового оловоорганического радикала, связанного с углеродным полимером). Из экологических соображений в 1989 г. использование в ПП этих, а также других токсичных металлов (Hg, Cd, As ) запретили, заменив на ПП на основе кремнийорганических полимеров.

Таблица 2. Содержание в организме, токсическая (ТД) и летальная дозы (ЛД) металлов 14 группы


В земной коре (%)

В океане (%)

В человеческом организме

Среднее (при массе тела 70 кг)

Кровь (мг/л)

обычно нетоксичен, но в виде СО и цианидов CN очень токсичен

(0,03-4,09)х10 -4

Нетоксичен

(0,07-7)х10 -10

Нетоксичен

(2,3-8,8)х10 -10

(0,33-2,4)х10 -4

ТД 2 г, ЛД нд, некоторые оловоорганич. соединения очень токсичны

(0,23-3,3)х10 -4

ТД 1 мг, ЛД 10 г

Углерод (С) - отличается от всех других элементов так называемой катенацией , то есть способностью образовывать соединения, в которых его атомы связаны друг с другом в длинные цепи или кольца. Это свойство объясняет образование миллионов соединений, называемых органическими , которым посвящен отдельный раздел химии - органическая химия .

Способность углерода к катенации объясняется несколькими особенностями:

Во-первых, прочностью связи С - С . Так, средняя энтальпия этой связи составляет около 350 кДж/моль, тогда как энтальпия связи Si - Si — только 226 кДж/моль.

Во-вторых, уникальной способностью атомов углерода к гибридизации : образованию 4 3 -орбиталей с тетраэдрической ориентацией (обеспечивающих формирование простых ковалентных связей), или 3 2 -орбиталей, ориентированных в одной плоскости (обеспечивающих образование двойных связей), или 2 -орбиталей с линейной ориентацией (обеспечивающих образование тройных связей).

Таким образом, углерод может образовывать 3 типа координационного окружения: линейную у двух- и трехатомных молекул, когда КЧ элемента равно 2, плоскотреугольную у молекул графита, фуллеренов, алкенов, карбонильных соединений, бензольного кольца, когда КЧ равно 3, и тетраэдрическую у алканов и их производных с КЧ = 4.

В природе углерод встречается в виде аллотропных, то есть различных структурных форм (графит, алмаз, фуллерены), а также в виде известняка и углеводородного сырья (угля, нефти и газа). Используется в виде кокса при выплавке стали, сажи в полиграфии, активированного угля при очистке воды, сахара и т.п.

В 2010 г. присуждена Нобелевская премия по физике за изучение уникальной формы С - графена . Лауреатам - выходцам из России - А. Гейму и К. Новосёлову удалось получить этот материал из графита. Он представляет собой двумерный кристалл, то есть похож на сетку из атомов С толщиной в один атом , волнообразной структуры , что обеспечивает устойчивость кристалла. Его свойства очень многообещающие: он является самым тонким прозрачным материалом из всех ныне известных, притом чрезвычайно прочным (примерно в 200 раз прочнее стали), обладает электро- и теплопроводностью. При комнатной температуре его электрическое сопротивление самое минимальное среди всех известных проводников. В недалёком будущем на основе графена будут созданы сверхскоростные компьютеры, плоскопанельные экраны и солнечные батареи, а также чувствительные газовые детекторы, реагирующие на несколько молекул газа. Не исключены и другие сферы его использования.

В форме оксида (СО ) и цианидов (СN -) углерод очень токсичен, поскольку нарушает процессы дыхания. Механизмы биологического действия у этих соединений разные. Цианид ингибирует дыхательный фермент цитохромоксидазу , быстро связываясь с Си — активным центром фермента, блокируя электронный поток на конечном участке дыхательной цепи. СО , будучи основанием Льюиса, связывается с атомом Fe в молекуле гемоглобина прочнее, чем O 2 , образуя карбонилгемоглобин , лишенный способности связывать и переносить O 2 . Способность СО образовывать координационные связи с d -металлами в низких степенях окисления приводит к образованию многообразных карбонильных соединений. Например, Fe в очень ядовитом веществе — пситакарбопиле Fe (CO ) 5 — имеет нулевую степень окисления, а в комплексе [Fe (CO ) 4 ] 2- — степень окисления -2 (рис. 1).

Рис. 1.

Стабилизация атома металла в низкой степени окисления в комплексах с СО объясняется способностью углерода выступать благодаря структуре низко расположенных р *-орбиталей в роли акцепторного лиганда . Эти орбитали перекрываются с занятыми орбиталями металла, образуя координационную р -связь, в которой металл выступает донором электронов. Это одно из немногих исключений из общего правила образования КС, где акцептором электронов является металл.

Нет смысла описывать свойства углерода более подробно, поскольку при многоэлементном анализе его, как правило, не только не определяют, но и считают его примесь в образце нежелательной и подлежащей максимальному удалению при пробоподготовке. При оптическом эмиссионном анализе он даёт очень широкий спектр, повышая шумовой фон и снижая тем самым предел чувствительности обнаружения определяемых элементов. При масс-спектрометрии органические молекулы образуют большое количество осколков молекул с разной молекулярной массой, дающих значительные помехи при анализе. Поэтому в подавляющем большинстве случаев все углеродсодержащие вещества при пробоподготовке удаляют.

Кремний (Si) — полуметалл. При восстановлении кремнезема (SiО 2) углеродом образуется черный аморфный Si . Кристаллы Si высокой чистоты напоминают серо-голубой металл. Кремний применяют в полупроводниках, сплавах и полимерах. Он важен для некоторых форм жизни, например, для построения оболочек у диатомовых водорослей; возможно, имеет значение и для организма человека. Некоторые силикаты канцерогенны, некоторые вызывают силикоз.

Во всех соединениях Si четырехвалентен, образует химические связи ко-валентного характера. Наиболее распространен диоксид SiO 2 . Несмотря на химическую инертность и нерастворимость в воде, при попадании в организм может образовывать кремниевые кислоты и кремнийорганические соединения с неявно выраженными биологическими свойствами. Токсичность SiO 2 зависит от дисперсности частиц: чем они мельче, тем токсичнее, хотя корреляции между растворимостью различных форм SiO 2 и силикогенностью не наблюдается. Связь токсичности кремниевых кислот именно с Si доказывает полная инертность пыли алмаза той же дисперсности.

В последнее время отмечено, что в биосредах кремниевые кислоты участвуют в формировании гидроксилалюмосиликатов , причем это явление нельзя объяснить ни связью Si-С , ни связью Si-О-С . По мере расширения промышленного использования Аl и его соединений посредством алюмосиликатов Аl все шире вовлекается во множество биохимических реакций. В частности, функциональные кислород- и фторсодержащие группы легко образуют высокоустойчивые комплексные соединения с Аl , извращая их метаболизм.

Наиболее изучены среди кремнийорганических соединений силиконы — полимеры, скелет молекулы которых состоит из чередующихся связанных между собой атомов Si и O 2 . К атомам Si в силиконах присоединены алкильные или арильные группы. Наличие Si в кремнийорганических соединениях кардинально меняет свойства веществ, когда они его не содержат. Например, обычные полисахариды можно выделить и очистить с помощью крепкого этанола, который осаждает полисахарид из раствора. Кремнийсодержащие углеводы, напротив, не осаждаются даже в 90% этаноле. Классификация кремнийорганических соединений представлена в табл. 3.

Таблица 3. Кремнийорганические полимеры

Название и структура

Примечание

Состоят только из Si . Энергия связи у углеродной цепи С - С равна 58,6, а у Si - Si 42,5 ккал/моль, и поэтому полиорганосиланы неустойчивы.

Энергия связи Si - О 89,3 ккал/моль. Поэтому эти полимеры прочны, устойчивы к температуре и окислительной деструкции. Этот класс полимеров очень разнообразен по строению. Линейные полисилаксаны широко применяют как синтетические эластичные и термостойкие каучуки.

В основной цепи атомы Si разделены цепочками из углеродных атомов.

В основной цепи имеются силоксановые группы, разделенные углеродными цепочками.

Основная цепь состоит из атомов С , а атомы Si содержатся в боковых группах или ответвлениях.

Макромолекулярные цепи включают атомы Si, О и металлов, где М = Al, Ti, Sb, Sn, В .

Наиболее вероятным механизмом развития силикоза считают разрушение фагоцитов, захвативших частицы SiO 2 . При взаимодействии с лизосомами кремниевые частицы разрушают лизосомы и саму клетку-фагоцит, вызывая выделение ферментов и осколков молекул органелл. Они взаимодействуют с другими фагоцитами, то есть запускается цепной процесс гибели фагоцитов. Если в клетке имеется некоторое количество кремниевых кислот, этот процесс ускоряется. Скопление погибших макрофагов инициирует выработку в окружающих фибробластах коллагена, вследствие чего в очаге развивается склероз.

Коллоидная кремниевая кислота является мощным гемолитиком, изменяет соотношение сывороточных белков, ингибирует ряд дыхательных и тканевых ферментов, нарушает метаболизм многих веществ, в том числе фосфора. В последнее время большое внимание уделяют силилиевым ионам (R 3 Si +). В них проявляется уникальная способность атома Si расширять свою координационную сферу, в виде повышения его электрофильности. Он взаимодействует с любыми нуклеофилами, включая ионы противоположного заряда (в том числе и реакционноспособные промежуточные метаболические продукты) и молекулы растворителя. Поэтому в конденсированных фазах они становятся «неуловимыми» и выявить их оказывается сложно (Кочина с соавт., 2006).

Кремнийорганические полимеры (КОП) вначале применяли в качестве противоводорослевых самополирующихся покрытий корпуса судов (Цукерман, Рухадзе, 1996). Однако затем были предложены разнообразные способы применения КОП в других отраслях народного хозяйства, в частности, в медицине в качестве прочных протезов костей.

Германий (Ge) — амфотерный полуметалл; при сверхвысокой чистоте выглядит как хрупкие кристаллы серебристо-белого цвета. Применяется в полупроводниках, сплавах и специальных стеклах для инфракрасной оптики. Считается биологическим стимулятором. В соединениях проявляет степень окисления +2 и +4.

Всасывание двуокиси и галогенидов Ge в кишечнике слабое, но в виде германатов M 2 GeO 4 несколько улучшается. С белками плазмы германий не связывается, и распределяется между эритроцитами и плазмой в соотношении примерно 2:1. Быстро (время полувыведения около 36 ч) выводится из организма. В целом малотоксичен.

Олово (Sn) — мягкий, пластичный металл. Используется в смазках, сплавах, припое, как добавка к полимерам, в составе красок для противообрастающих покрытий, в составе высокоядовитых для низших растений и животных летучих оловоорганических соединений. В виде неорганических соединений нетоксичен.

Имеет два энантиотропа , «серое» (б) и «белое» (в) олово, то есть разные аллотропные формы, устойчивые в определенном диапазоне условий. Температура перехода между этими формами при давлении 1 атм. равна 286,2°К (13,2°С). Белое олово имеет искаженную структуру серой модификации с КЧ = 6 и плотностью 7,31 г/см 3 . Оно стабильно в обычных условиях, а при пониженной температуре медленно преобразуется в форму, имеющую алмазоподобную структуру с КЧ = 4 и плотностью 5,75 г/см 3 . Подобное изменение плотности металла в зависимости от температуры среды встречается крайне редко и может вызывать драматические последствия. Например, в условиях холодных зим разрушались оловянные пуговицы на мундирах солдат, а в 1851 г. в церкви г. Зейца оловянные трубы органа превратились в порошок.

В организме откладывается в печени, почках, костях, мышцах. При отравлении оловом снижается эритропоэз, что проявляется уменьшением показателей гематокрита, гемоглобина и числа эритроцитов. Отмечено также ингибирование дегидратазы 5-аминолевулината , одного из ферментов цепи биосинтеза гема, а также печеночных ферментов глутатионредуктазы и дегидрогеназ глюкозо-6-фосфата , лактата и сукцината . По-видимому, Sn выводится из организма в составе комплексов с SH -содержащими субстратами.

Свинец (Pb) — мягкий, ковкий, пластичный металл. Во влажном воздухе покрывается оксидной пленкой, устойчив к действию кислорода и воды. Используется в аккумуляторах, производстве кабелей, красок, стекла, смазок, бензина и средств защиты от радиации. Является токсичным металлом 1 группы опасности, так как накапливается в организме в костной ткани с нарушением функции почек и сердечнососудистой системы. В развитых странах его содержание контролируется при обязательной диспансеризации населения. Вызывает разнообразные заболевания.

Медицинская бионеорганика. Г.К. Барашков



Поделиться