Общее свойство всех колебательных систем возникновение силы. A

(или собственные колебания ) — это колебания колебательной системы, совершаемые только благодаря первоначально сообщенной энергии (потенциальной или кинети-ческой) при отсутствии внешних воздействий.

Потенциальная или кинетическая энергия может быть сообщена, например, в механических системах через начальное смещение или начальную скорость.

Свободно колеблющиеся тела всегда взаимодействуют с другими телами и вместе с ними обра-зуют систему тел, которая называется колебательной системой .

Например, пружина, шарик и вертикальная стойка, к которой прикреплен верхний конец пружины (см. рис. ниже), входят в колебательную систему. Здесь шарик свободно скользит по струне (силы трения пренебрежимо малы). Если отвести шарик вправо и предоставить его самому себе, он будет совершать свободные колебания около положения равновесия (точки О ) вследствие действия силы упругости пружины, направленной к положению равновесия.

Другим классическим примером механической колебательной системы является математический маятник (см. рис. ниже). В данном случае шарик совершает свободные колебания под действием двух сил: силы тяжести и силы упругости нити (в колебательную систему входит также Земля). Их равнодействующая направлена к положению равновесия.

Силы, действующие между телами колебательной системы, называются внутренними силами . Внешними силами называют-ся силы, действующие на систему со стороны тел, не входящих в нее. С этой точки зрения свобод-ные колебания можно определить как колебания в системе под действием внутренних сил после того, как система выведена из положения равновесия.

Условиями возникновения свободных колебаний являются:

1) возникновение в них силы, возвращающей систему в положение устойчивого равновесия, после того как ее вывели из этого состояния;

2) отсутствие трения в системе.

Динамика свободных колебаний.

Колебания тела под действием сил упругости . Уравнение колебательного движения тела под действием силы упругости F () может быть получено с учетом второго закона Ньютона (F = mа ) и закона Гука (F упр = -kx ), где m — масса шарика, а — ускорение, приобретаемое шариком под действием силы упругости, k — коэффициент жесткости пружины, х — смещение тела от положения равновесия (оба уравнения записаны в проекции на горизонтальную ось Ох ). Приравнивая правые части этих уравнений и учитывая, что ускорение а — это вторая производная от координаты х (смещения), получим:

.

Аналогично выражение для ускорения а получим, дифференцируя (v = -v m sin ω 0 t = -v m x m cos (ω 0 t + π/2) ):

a = -a m cos ω 0 t,

где a m = ω 2 0 x m — амплитуда ускорения. Таким образом, амплитуда скорости гармонических коле-баний пропорциональна частоте, а амплитуда ускорения — квадрату частоты колебания.

Всякое колебательное движение есгь движение, происходящее с ускорением, поэтому на колеблющиеся тела должны действовать силы, сообщающие им эти ускорения. В частности, если точечное тело массой совершает гармоническое колебание, то, согласно второму закону механики, на него должна действовать сила, равная

где Направление силы совпадает с направлением ускорения, а вектор ускорения при гармонических колебаниях, согласно формуле (4.5), всегда направлен к положению равновесия. Таким образом, для того чтобы тело совершало гармоническое колебательное движение, на него должна действовать сила, всегда направленная к положению равновесия, а по величине - прямо пропорциональная смещению от этого положения. При исследовании колебательных систем можно легко найти коэффициент пропорциональности между действующей на тело силой и смещением х этого тела от положения равновесия; тогда, зная еще и массу колеблющегося тела, можно вычислить частоту и период колебания; из соотношения следует:

Силы, всегда направленные к положению равновесия, называются возвращающими. Рассмотрим несколько примеров:

1. Колебательная система, состоящая из массы и пружины (см. рис. 1.36, б). Возвращающей силой является упругая сила, действующая на тело со стороны деформированной пружины. Эта сила при малых деформациях прямо пропорциональна изменению длины пружины Приложив к пружине внешние силы и измерив вызванные ими удлинения

(или сжатия) пружины, можно найти коэффициент упругости пружины и по формуле (4.10) рассчитать частоту колебаний тел, прикрепленных к концам пружины. При этом колебания будут гармоническими и со постоянны) только в том случае, если на колеблющееся, тело не действуют никакие другие силы, кроме возвращающей причем коэффициент от которого, согласно формуле (4.10), зависит частота колебаний, должен все время сохраняться постоянным. В частности, если температура пружины изменяется, то а следовательно, и частота колебаний также изменяются; колебания не будут гармоническими.

2. Система, совершающая крутильные (поворотные) колебания (см. рис. 1.38, б). При крутильных колебаниях на тело действует возвращающий момент, приостанавливающий отклонение тела от состояния равновесия и затем сообщающий ему обратное движение. Возвращающий момент возникает при деформации (кручении) пружины (или стержня), к которой прикреплено колеблющееся тело. При малых углах отклонения этот момент прямо пропорционален углу отклонения.

Если крутильные колебания гармонические, т. е.

то угловая скорость и угловое ускорение при повороте также изменяются по гармоническому закону:

Возвращающий момент найдем как произведение углового ускорения на момент инерции колеблющегося тела:

где постоянная величина (если момент инерции тела при колебаниях не изменяется). Этот коэффициент можно найти, приложив к пружине (или стержню) внешние скручивающие моменты и измеряя углы скручивания а:

тогда частота и период колебаний определяются по формулам:

Согласно выражению (4.13), при гармонических крутильных колебаниях возвращающий момент должен быть точно пропорционален углу отклонения; если эта пропорциональность не соблюдается (например, при очень больших углах поворота), то колебания не будут гармоническими (хотя при отсутствии трения будут незатухающими).

3. Физический маятник (рис. 1.40). Возвращающим моментом является момент силы тяжести, имеющий знак,

противоположный знаку угла отклонения а и равный

где расстояние от точки опоры до центра тяжести тела.

При малых углах отклонения (угол а - в радианах); тогда возвращающий момент

пропорционален углу отклонения и колебания маятника будут гармоническими.

Сравнивая с выражением (4.13), получим следовательно,

При больших углах отклонения, а также при деформации тела во время колебаний (переменные колебания оказываются негармоническими, хотя они при отсутствии или компенсации трения могут быть незатухающими.

4. Математический маятник представляет собой точечное тело массой подвешенное к невесомой и нерастяжимой нити длиной I (рис. 1.41). Возвращающей силой является проекция силы тяжести на направление движения тела; имеем:

В радианах). Замечаем, что условие пропорциональности между возвращающей силой и смещением от положения равновесия х здесь также не соблюдается, поэтому колебания этого маятника не являются гармоническими. Но если углы а малы, так что то

так как эта сила всегда направлена к положению равновесия и поэтому имеет знак, противоположный знаку то

В этом случае колебания можно полагать гармоническими; сравнивая с выражением (4.9), получаем:

т. е. частота и период колебаний не зависят от массы колеблющегося тела, а определяются только длиной нити и ускорением силы тяжести (колебаниями маятников пользуются для определения Для постоянства коэффициента а следовательно, и частоты колебаний со необходимо постоянство Между тем сила действующая вдоль нити, может вызвать ее удлинение, которое будет минимальным в крайних положениях и максимальным при прохождении тела через точку О. Поэтому, чтобы колебания маятника были гармоническими, необходимо кроме малости углов отклонения дополнительно еще и условие нерастяжимости нити.

Из этих примеров видно, что при малых амплитудах частота (или период) колебаний определяется только свойствами системы. Однако при больших отклонениях от положения равновесия линейная зависимость возвращающей силы от смещения а также возрастающего момента от угла поворота строго не соблюдается и частота колебаний зависит в некоторой степени также и от амплитуды колебаний или

Колебательные движения широко распространены в окружающей нас жизни. Примерами колебаний могут служить: движение иглы швейной машины, качелей, маятника часов, крыльев насекомых во время полета и многих других тел.

В движении этих тел можно найти много различий. Например, качели движутся криволинейно, а игла швейной машины - прямолинейно; маятник часов колеблется с большим размахом, чем крылья стрекозы. За одно и то же время одни тела могут совершать большее число колебаний, чем другие.
Но при всём разнообразии этих движений у них есть важная общая черта: через определённый промежуток времени движение любого тела повторяется.

Действительно, если шарик отвести от положения равновесия и отпустить, то он, пройдя через положение равновесия, отклонится в противоположную сторону, остановится, а затем вернётся к месту начала движения. За этим колебанием последует второе, третье и т. д., похожие на первое.

Промежуток времени, через который движение повторяется, называется периодом колебаний.

Поэтому говорят, что колебательное движение периодично.

В движении колеблющихся тел кроме периодичности есть ещё одна общая черта.

Обрати внимание!

За промежуток времени, равный периоду колебаний, любое тело дважды проходит через положение равновесия (двигаясь в противоположных направлениях).

Повторяющиеся через равные промежутки времени движения, при которых тело многократно и в разных направлениях проходит положение равновесия, называются механическими колебаниями.

Под действием сил, возвращающих тело в положение равновесия, тело может совершать колебания как бы само по себе. Первоначально эти силы возникают благодаря совершению над телом некоторой работы (растяжению пружины, поднятию на высоту и т.п.), что приводит к сообщению телу некоторого запаса энергии. За счёт этой энергии и происходят колебания.

Пример:

Чтобы заставить качели совершать колебательные движения, нужно сначала вывести их из положения равновесия, оттолкнувшись ногами, либо сделать это руками.

Колебания, происходящие благодаря только начальному запасу энергии колеблющегося тела при отсутствии внешних воздействий на него, называются свободными колебаниями.

Пример:

Примером свободных колебаний тела являются колебания груза, подвешенного на пружине. Первоначально выведенный из равновесия внешними силами груз в дальнейшем будет колебаться только за счет внутренних сил системы «груз-пружина» - силы тяжести и силы упругости.

Условия возникновения свободных колебаний в системе:

а) система должна находиться в положении устойчивого равновесия: при отклонении системы от положения равновесия должна возникать сила, стремящаяся вернуть систему в положение равновесия - возвращающая сила;
б) наличие у системы избыточной механической энергии по сравнению с ее энергией в положении равновесия;
в) избыточная энергия, полученная системой при смещении ее из положения равновесия, не должна быть полностью израсходована на преодоления сил трения при возвращении в положение равновесия, т.е. силы трения в системе должны быть достаточно малы.

Свободно колеблющиеся тела всегда взаимодействуют с другими телами и вместе с ними образуют систему тел, которая получила название колебательной системы.

Системы тел, которые способны совершать свободные колебания, называются колебательными системами.

Одно из основных общих свойств всех колебательных систем заключается в возникновении в них силы, возвращающей систему в положение устойчивого равновесия.

Пример:

В случае колебаний шарика на нити шарик совершает свободные колебания под действием двух сил: силы тяжести и силы упругости нити. Их равнодействующая направлена к положению равновесия.


Земля, подставка и подвешенное к подставке тело (см. рис. 3) образуют колебательную систему, называемую физическим маятником. Стойки, две пружины и тело m (см. рис. 4) образуют колебательную систему, которую обычно называют горизонтальным пружинным маятником. Всем колебательным системам присущ ряд общих свойств. Рассмотрим главные из них.

1 У каждой колебательной системы есть состояние устойчивого равновесия. У физического маятника – это положение, в котором центр массы подвешенного тела находится на одной вертикали с точкой подвеса. У вертикального пружинного маятника – это положение, в котором сила тяжести уравновешивается силой упругости пружины. У горизонтального пружинного маятника – это положение, при котором обе пружины деформированы одинаково.

2 После того как колебательная система выведена из положения устойчивого равновесия, появляется сила, возвращающая систему в устойчивое положение. Происхождение этой силы может быть различным. Так, у физического маятника – это равнодействующая f силы тяжести G и силы упругости T (рис.5), а у пружинных маятников – это сила упругости пружин (рис. 6).



3 Возвратившись в устойчивое состояние, колебательная система не может сразу остановиться. В механических колебательных системах этому мешает инертность колеблющегося тела. Перечисленные свойства приводят к тому, что если колебательную систему тем или иным способом вывести из состояния устойчивого равновесия, то в ней в отсутствие внешних сил возникнут и некоторое время будут сохраняться колебания. Возникшие колебания могли бы продолжаться неограниченно долго, если бы в колебательной системе не было трения (сопротивления). Именно такие, идеальные колебательные системы мы во многих случаях будем рассматривать. Идеальная колебательная система имеет два определяющих признака:

а) в ней отсутствует трение (сопротивление) и, следовательно, не происходит необратимых превращений энергии;

б) параметры такой колебательной системы (длина нити, масса колеблющегося тела, жесткость пружины) постоянны.

Примером идеальной колебательной системы может служить так называемый математический маятник, представляющий собой груз малых размеров, подвешенный на гибкой невесомой и нерастяжимой пружине. Длина нити и масса груза в процессе колебания маятника остаются неизменными. Если нить считать бесконечно тонкой и идеально гибкой, а размеры груза бесконечно малыми, точечными, то при колебаниях математического маятника трения не будет.

В реальных колебательных системах имеется трение, а параметры системы в процессе колебательного движения немного изменяются. Так, маятник, представляющий собой груз конечных размеров, подвешенный на шелковой нити, нельзя считать в полном смысле идеальной колебательной системой, так как в процессе его колебательного движения действует сопротивление воздуха и трение в точке подвеса, а длина нити изменяется (хотя и совсем незначительно). Но при малых колебаниях такого маятника сопротивление воздуха мало, а длина нити меняется столь незначительно, что с известным приближением можно этот маятник считать почти идеальной колебательной системой. Это относится также к пружинному маятнику. Его можно считать идеальной колебательной системой, если масса колеблющегося тела и жесткость пружины постоянны, а трение столь мало, что его можно не учитывать.

1 Свободные колебания. Колебания, происходящие в колебательной системе, не подверженной действию периодических внешних сил, называются свободными колебаниями. Для возникновения свободных колебаний на колебательную систему должно быть оказано из вне кратковременное воздействие, выводящее систему из состояния равновесия (отклонение из среднего положения маятника, зажатой в тисках стальной линейки, струны и т.п.).

2 Осциллограмма колебаний .Если грузом маятника будет служить сосуд с чернилами, в котором имеется узкое отверстие, то при колебаниях маятника.

ОК-1 Механические колебания

Механические колебания - это движения, которые точно или приблизительно повторяются через определенные интервалы времени.

Вынужденные колебания - это колебания, которые происходят под действием внешней, периодически изменяющейся силы.

Свободные колебания - это колебания, которые возникают в системе под действием внутренних сил, после того как система была выведена из положения устойчивого равновесия.

Колебательные системы

Условия возникновения механических колебаний

1. Наличие положения устойчивого равновесия, при котором равнодействующая равна нулю.

2. Хотя бы одна сила должна зависеть от координат.

3. Наличие в колеблющейся материальной точке избыточной энергии.

4. Если вывести тело из положения равновесия, то равнодействующая не равна нулю.

5. Силы трения в системе малы.

Превращение энергии при колебательном движении

В неустойчивом равновесии имеем: E п →E к →E п →E к →E п.

За полное колебание
.

Выполняется закон сохранения энергии.

Параметры колебательного движения

1
.
Смещениех - отклонение колеблющейся точки от положения равновесия в данный момент времени.

2. Амплитудах 0 - наибольшее смещение от положения равновесия.

3. ПериодТ - время одного полного колебания. Выражается в секундах (с).

4. Частотаν - число полных колебаний за единицу времени. Выражается в герцах (Гц).

,
;
.

Свободные колебания математического маятника

Математический маятник – модель – материальная точка, подвешенная на нерастяжимой невесомой нити.

Запись движения колеблющейся точки как функции времени.

В
ыведем маятник из положения равновесия. Равнодействующая (тангенциальная)F т = –mg sinα , т. е.F т – проекция силы тяжести на касательную к траектории тела. Согласно второму закону динамикиma т =F т. Так как уголα очень мал, тоma т = –mg sinα .

Отсюда a т =g sinα ,sinα =α =s /L ,

.

Следовательно, a ~s в сторону равновесия.

Ускорение а материальной точки математического маятника пропорционально смещению s .

Таким образом, уравнение движения пружинного и математического маятников имеют одинаковый вид: а ~ х .

Период колебания

Пружинный маятник

Предположим, что собственная частота колебаний тела, прикрепленного к пружине,
.

Период свободных колебаний
.

Циклическая частота ω = 2πν .

Следовательно,
.

Получаем , откуда
.

Математический маятник

С
обственная частота математического маятника
.

Циклическая частота
,
.

Следовательно,
.

Законы колебаний математического маятника

1. При небольшой амплитуде колебаний период колебания не зависит от массы маятника и амплитуды колебаний.

2. Период колебания прямо пропорционален корню квадратному из длины маятника и обратно пропорционален корню квадратному из ускорения свободного падения.

Гармонические колебания

П
ростейший вид периодических колебаний, при которых периодические изменения во времени физических величин происходят по закону синуса или косинуса, называют гармоническими колебаниями:

x =x 0 sinωt илиx =x 0 cos(ωt + φ 0),

где х - смещение в любой момент времени;х 0 - амплитуда колебаний;

ωt + φ 0 - фаза колебаний;φ 0 - начальная фаза.

Уравнение x =x 0 cos(ωt + φ 0), описывающее гармонические колебания, является решением дифференциального уравненияx " +ω 2 x = 0.

Дважды продифференцировав это уравнение, получим:

x " = −ω 0 sin(ωt + φ 0),x " = −ω 2 x 0 cos(ωt + φ 0),ω 2 x 0 cos(ωt + φ 0) −ω 2 x 0 cos(ωt + φ 0).

Если какой-либо процесс можно описать уравнением x " +ω 2 x = 0, то совершается гармоническое колебание с циклической частотойω и периодом
.

Таким образом, при гармонических колебаниях скорость и ускорение также изменяются по закону синуса или косинуса .

Так, для скорости v x =x " = (x 0 cosωt )" =x 0 (cosωt )" , т.е.v= −ωx 0 sinωt ,

или v=ωx 0 cos(ωt /2) =v 0 cos(ωt /2), гдеv 0 =x 0 ω - амплитудное значение скорости. Ускорение изменяется по закону:a x =v" x =x " = −(ωx 0 sinωt )" = −ωx 0 (sinωt )" ,

т.е. a = −ω 2 x 0 cosωt =ω 2 x 0 cos(ωt ) =α 0 cos(ωt ), гдеα 0 =ω 2 x 0: - амплитудное значение ускорения.

Преобразование энергии при гармонических колебаниях

Если колебания тела происходят по закону x 0 sin(ωt + φ 0), токинетическая энергия тела равна :

.

Потенциальная энергия тела равна :
.

Так как k = 2 , то
.

За нулевой уровень отсчета потенциальной энергии выбирается положение равновесия тела (х = 0).

Полная механическая энергия системы равна:
.

ОК-3 Кинематика гармонических колебаний


Фаза колебаний φ - физическая величина, которая стоит под знакомsinилиcosи определяет состояние системы в любой момент времени согласно уравнениюх =x 0 cosφ .

Смещение х тела в любой момент времени

x
=x 0 cos(ωt + φ 0), гдеx 0 - амплитуда;φ 0 - начальная фаза колебаний в начальный момент времени (t = 0), определяет положение колеблющейся точки в начальный момент времени.

Скорость и ускорение при гармонических колебаниях

Е
сли тело совершает гармонические колебания по законуx =x 0 cosωt вдоль осиОх , то скорость движения телаv x определяется выражением
.

Более строго, скорость движения тела - производная координаты х по времениt :

v
x =x " (t ) = − sinω =x 0 ω 0 ω cos(ωt /2).

Проекция ускорения: a x =v" x (t ) = −x 0 ω cosωt =x 0 ω 2 cos(ωt ),

v max =ωx 0 ,a max =ω 2 x .

Если φ 0 x = 0, тоφ 0 v =π /2,φ 0 a =π .

Резонанс

Р

езкое возрастание амплитуды вынужденных колебаний тела при совпадении частоты ω F изменения действующей на это тело внешней силы с собственной частотой ω с свободных колебаний данного тела - механический резонанс. Амплитуда возрастает, еслиω F ω с ; становится максимальной приω с =ω F (резонанс).

Возрастание x 0 при резонансе тем больше, чем меньше трение в системе. Кривые1 ,2 ,3 соответствуют слабому, сильному критическому затуханию:F тр3 >F тр2 >F тр1 .

При малом трении резонанс острый, при большом трении тупой. Амплитуда при резонансе равна:
, гдеF max - амплитудное значение внешней силы;μ - коэффициент трения.

Использование резонанса

Раскачивание качелей.

Машины для утрамбовки бетона.

Частотомеры.

Борьба с резонансом

Уменьшить резонанс можно, увеличив силу трения или

На мостах поезда движутся с определенной скоростью.



Поделиться