Применение теории вероятностей в современном мире. Вероятность и статистика – основные факты

Обновлено 09.12.2009

Небольшой экскурс в историю применения теории вероятности на практике.

Вплоть до конца 18 столетия прикладная статистика, без которой немыслим государственный учет и контроль, и потому существовавшая издавна, носила элементарный, чисто арифметический характер. Теория вероятностей оставалась чисто академической дисциплиной, и в качестве сравнительно сложных ее “приложений” выступали лишь азартные игры. Улучшение технологии производства игральных костей в 18 векестимулировало развитие теории вероятности. Игроки, сами того не желая, начали в массовом порядке ставить воспроизводимые опыты, так как кости стали одинаковыми, стандартными. Так возник пример того, что впоследствии будет названо “статистическим экспериментом” - опыт, который можно повторять неограниченное число раз в одинаковых условиях.

В 19 и 20 столетиях теория вероятностей проникает сперва в науку (астрономию, физику, биологию), потом в практику (сельское хозяйство, промышленность, медицину),и наконец, после изобретения компьютеров, в повседневную жизнь любого человека, пользующегося современными средствами получения и передачи информации.Проследим основные этапы.

1.Астрономия.

Именно для использованияв астрономии был разработан знаменитый “метод наименьших квадратов” (Лежандр 1805, Гаусс 1815).Главной задачей, для решения которой он был первоначально использован, стал расчет орбит комет, который приходилось производить по малому числу наблюдений. Ясно, что надежное определение типа орбиты (эллипс или гипербола) и точный расчет ее параметров оказывается трудным, так как орбита наблюдается лишь на небольшом участке. Метод оказался эффективным, универсальным, и вызвал бурные споры о приоритете. Его стали использовать в геодезии и картографии. Сейчас, когда искусство ручных расчетов утрачено, трудно представить, что при составлении карт мирового океана в 1880-х годах в Англии методом наименьших квадратов была численно решена система, состоящая из примерно 6000 уравнений с несколькими сотнями неизвестных.

Во второй половине 19 века была в работах Максвелла, Больцмана и Гиббса была развита статистическая механика, которая описывала состояние разряженных систем, содержащих огромное число частиц (порядка числа Авогадро). Если раньше понятие распределения случайной величины было преимущественно связано с распределением ошибок измерения, то теперь распределенными оказались самые разные величины - скорости, энергии, длины свободного пробега.

3.Биометрия.

В 1870-1900 годах бельгиец Кетле и англичане Френсис Гальтон и Карл Пирсон основали новое научное направление - биометрию,в которой впервые стала систематически и количественно изучаться неопределенная изменчивость живых организмов и наследование количественных признаков. В научный оборот были введены новые понятия - регрессии и корреляции.

Итак, вплоть до начала 20 века основные приложения теории вероятности были связаны с научными исследованиями. Внедрение в практику - сельское хозяйство, промышленность, медицину произошло в 20 веке.

4.Сельское хозяйство.

В начале 20 века в Англии была поставлена задача количественного сравнения эффективности различных методов ведения сельского хозяйства. Для решения этой задачи была развита теория планирования экспериментов, дисперсионный анализ. Основная заслуга в развитии этого уже чисто практического использования статистики принадлежит сэру Рональду Фишеру, астроному(!) по образованию, а в дальнейшем фермеру, статистику, генетику, президенту английского Королевского общества. Современная математическая статистика, пригодная для широкого применения в практике, была развита в Англии (Карл Пирсон, Стьюдент, Фишер). Стьюдент впервые решил задачу оценки неизвестного параметра распределения без использования байесовского подхода.

5.Промышленность. Введение методов статистического контроля на производстве (контрольные карты Шухарта). Сокращение необходимого количества испытаний качества продукции. Математические методы оказываются уже настолько важными, что их стали засекречивать. Так книга с описанием новой методики, позволявшей сократить количество испытаний (“Последовательный анализ” Вальда), была издана только после окончания второй мировой войны в 1947 году.

6.Медицина. Широкое применение статистических методов в медицине началось сравнительно недавно (вторая половина 20 века). Развитие эффективных методов лечения (антибиотики, инсулин, эффективная анестезия, искусственное кровообращение) потребовало достоверных методов оценки их эффективности. Возникло новое понятие “Доказательная медицина”. Начал развиваться более формальный, количественный подход к терапии многих заболевании - введение протоколов, guide lines .

С середины 1980-х годов возник новый и важнейший фактор, революционизировавший все приложения теории вероятностей - возможность широкого использования быстрых и доступных компьютеров. Почувствовать всю громадность произошедшего переворота можно, если учесть, что один(!)современный персональный компьютер превосходит по быстродействию и памяти все(!) компьютеры СССР и США, имевшиеся к 1968 году, времени, когда уже были осуществлены проекты, связанные со строительством атомных электростанций, полетами на Луну, созданием термоядерной бомбы. Сейчас методом прямого экспериментирования можно получать результаты, которые ранее были недоступны - thinking of unthinkable .

7.Биоинформатика. Начиная с 1980-х годов количество известных последовательностей белков и нуклеиновых кислот стремительно возрастает. Объем накопленной информации таков, что только компьютерный анализ этих данных может решать задачи по извлечению информации.

8.Распознавание образов.

2.1. Выбор математического аппарата теории надежности

Сделанное выше определение надежности явно недоста­точно, так как оно носит лишь качественный характер и не позволяет решать различные инженерные задачи в процессе проектирования, изготовления, испытания и эксплуатации авиационной техники. В частности, оно не позволяет решать такие важные задачи, как, например:

Оценивать надежность (безотказность, восстанавливае­мость, сохраняемость, готовность и долговечность) существую­щих и создающихся новых конструкций;

Сравнивать надежность разнотипных элементов и си­стем;

Оценивать эффективность восстановления неисправных самолетов;

Обосновывать планы ремонта и состав запасных частей, потребных для обеспечения планов летной работы;

Определять объем, периодичность, стоимость выполне­ния подготовок к полету, регламентных работ и всего комп­лекса технического обслуживания;

Определять затраты времени, снл и средств, потребные для восстановления неисправных технических устройств.

Трудность определения количественных характеристик на­дежности вытекает из самой природы отказов, каждый из ко­торых является результатом совпадения ряда неблагоприят­ных факторов, таких, как, например, перегрузки, местные отклонения от расчетных режимов работы элементов и си­стем, изъяны материалов, изменение внешних условий и др., обладающих причинными связями разной степени и разной природы, вызывающих внезапные концентрации нагрузок, пре­вышающих расчетную нагрузку.

Отказы авиационной техники зависят от многих причин, in поддающихся предварительной оценке с точки зрения их чычимости как первостепенные или второстепенные. Это по — чюляет рассматривать число отказов и время их появления 1 качестве случайных величин, т. е. величин, которые в зави — пмости от случая могут принимать различные значения, при — м ыранее неизвестно какие именно.

Установление количественных зависимостей классически — III методами при такой сложной ситуации практически не — 1к 11 можно, так как многочисленные второстепенные случай­ные факторы играют такую заметную роль, что выделить пер­вое м’пенные, главные факторы из множества других нельзя. Кроме того, применение только классических методов ис — ’ ледования, основанных на рассмотрении вместо явления его прощенной и идеализированной модели, построенной на учете. ишь главных факторов и пренебрежении второстепенными, всегда дает верный результат.

Полому для изучения таких явлений в настоящее время при достигнутом уровне развития науки и техники лучшим обрн юм могут быть использованы теория вероятностей и ма — | емн і нческая статистика - науки, изучающие закономернос — III в случайных явлениях и в некоторых случаях хорошо до — IIі>’111)110111110 классические методы.

К цоегоннетнам этих методов следует отнести следующие і рн обе юя гельегна:

І) сіаіін’іірнч’кііе методы, не раскрывая индивидуальных її и причин пі лглыюго отказа, устанавливают вместо

……… і. і рvniiiiiHи о pc iyиі. і.іга массовой эксплуатации с

Mill…………. (ІКНІМО (игрой І носімо) в УСЛОВИЯХ

" in in hi і " її і ими ‘іпм і причин;

‘ І "і ими) ні і ii’ii kii методов полученные резуль-

1 » ……… і і ими поиски м подои соответствуют всему

1 .. пік» pcarn. in. iK уїловин эксплуатации, а не той или мі шріїїНініїоїі и сильно упрощенной схеме; м І..І основании массовых наблюдений за появлением от­ит і і. июни і ся возможным выявить общие закономерности, инженерный анализ которых открывает путь для повышения ПНДІ кносш авиационной техники в процессе ее создания и но иержанни на заданном уровне в процессе эксплуатации.

Указанные достоинства этого математического аппарата делают его пока единственно приемлемым для исследования допросов надежности авиационной техники. Вместе с тем, в практике следует учитывать специфические ограничения, при­зі

сущие статистическим методам, которые не могут дать ответа на вопрос, будет ли данное техническое устройство функциони­ровать безотказно на протяжении интересующего нас периода или нет. Эти методы дают возможность только определить ве­роятность безотказной работы того или иного экземпляра авиационной техники и оценить риск того, что за интересую­щий нас период эксплуатации произойдет отказ.

Выводы, полученные статистическим путем, всегда опира­ются на прошлый опыт эксплуатации авиационной техники, а поэтому оценка будущих отказов будет строгой лишь при до­статочно точном совпадении всего комплекса условий эксплу­атации (режимы работы, условия хранения).

Для анализа и оценки восстанавливаемости и готовности авиационной техники к полету также применяют эти мето­ды, используя закономерности теории массового обслужива­ния и особенно некоторые разделы теории восстановления.

"Случайности не случайны"... Звучит так, словно сказал философ, но на деле изучать случайности удел великой науки математики. В математике случайностями занимается теория вероятности. Формулы и примеры заданий, а также основные определения этой науки будут представлены в статье.

Что такое теория вероятности?

Теория вероятности - это одна из математических дисциплин, которая изучает случайные события.

Чтобы было немного понятнее, приведем небольшой пример: если подкинуть вверх монету, она может упасть «орлом» или «решкой». Пока монета находится в воздухе, обе эти вероятности возможны. То есть вероятность возможных последствий соотносится 1:1. Если из колоды с 36-ю картами вытащить одну, тогда вероятность будет обозначаться как 1:36. Казалось бы, что здесь нечего исследовать и предугадывать, тем более при помощи математических формул. Тем не менее, если повторять определенное действие много раз, то можно выявить некую закономерность и на ее основе спрогнозировать исход событий в других условиях.

Если обобщить все вышесказанное, теория вероятности в классическом понимании изучает возможность возникновения одного из возможных событий в числовом значении.

Со страниц истории

Теория вероятности, формулы и примеры первых заданий появились еще в далеком Средневековье, когда впервые возникли попытки спрогнозировать исход карточных игр.

Изначально теория вероятности не имела ничего общего с математикой. Она обосновывалась эмпирическими фактами или свойствами события, которое можно было воспроизвести на практике. Первые работы в этой сфере как в математической дисциплине появились в XVII веке. Родоначальниками стали Блез Паскаль и Пьер Ферма. Длительное время они изучали азартные игры и увидели определенные закономерности, о которых и решили рассказать обществу.

Такую же методику изобрел Христиан Гюйгенс, хотя он не был знаком с результатами исследований Паскаля и Ферма. Понятие «теория вероятности», формулы и примеры, что считаются первыми в истории дисциплины, были введены именно им.

Немаловажное значение имеют и работы Якоба Бернулли, теоремы Лапласа и Пуассона. Они сделали теорию вероятности больше похожей на математическую дисциплину. Свой теперешний вид теория вероятностей, формулы и примеры основных заданий получили благодаря аксиомам Колмогорова. В результате всех изменений теория вероятности стала одним из математических разделов.

Базовые понятия теории вероятностей. События

Главным понятием этой дисциплины является "событие". События бывают трех видов:

  • Достоверные. Те, которые произойдут в любом случае (монета упадет).
  • Невозможные. События, что не произойдут ни при каком раскладе (монета останется висеть в воздухе).
  • Случайные. Те, что произойдут или не произойдут. На них могут повлиять разные факторы, которые предугадать очень трудно. Если говорить о монете, то случайные факторы, что могут повлиять на результат: физические характеристики монеты, ее форма, исходное положение, сила броска и т. д.

Все события в примерах обозначаются заглавными латинскими буквами, за исключением Р, которой отведена другая роль. Например:

  • А = «студенты пришли на лекцию».
  • Ā = «студенты не пришли на лекцию».

В практических заданиях события принято записывать словами.

Одна из важнейших характеристик событий - их равновозможность. То есть, если подбросить монету, все варианты исходного падения возможны, пока она не упала. Но также события бывают и не равновозможными. Это происходит, когда кто-то специально воздействует на исход. Например, «меченые» игральные карты или игральные кости, в которых смещен центр тяжести.

Еще события бывают совместимыми и несовместимыми. Совместимые события не исключают появления друг друга. Например:

  • А = «студентка пришла на лекцию».
  • В = «студент пришел на лекцию».

Эти события независимы друг от друга, и появление одного из них не влияет на появление другого. Несовместимые события определяются тем, что появление одного исключает появление другого. Если говорить о той же монете, то выпадение «решки» делает невозможным появление «орла» в этом же эксперименте.

Действия над событиями

События можно умножать и складывать, соответственно, в дисциплине вводятся логические связки «И» и «ИЛИ».

Сумма определяется тем, что может появиться или событие А, или В, или два одновременно. В случае когда они несовместимы, последний вариант невозможен, выпадет или А, или В.

Умножение событий заключается в появлении А и В одновременно.

Теперь можно привести несколько примеров, чтобы лучше запомнились основы, теория вероятности и формулы. Примеры решения задач далее.

Задание 1 : Фирма принимает участие в конкурсе на получение контрактов на три разновидности работы. Возможные события, которые могут произойти:

  • А = «фирма получит первый контракт».
  • А 1 = «фирма не получит первый контракт».
  • В = «фирма получит второй контракт».
  • В 1 = «фирма не получит второй контракт»
  • С = «фирма получит третий контракт».
  • С 1 = «фирма не получит третий контракт».

С помощью действий над событиями попробуем выразить следующие ситуации:

  • К = «фирма получит все контракты».

В математическом виде уравнение будет иметь следующий вид: К = АВС.

  • М = «фирма не получит ни одного контракта».

М = А 1 В 1 С 1 .

Усложняем задание: H = «фирма получит один контракт». Поскольку не известно, какой именно контракт получит фирма (первый, второй или третий), необходимо записать весь ряд возможных событий:

Н = А 1 ВС 1 υ АВ 1 С 1 υ А 1 В 1 С.

А 1 ВС 1 - это ряд событий, где фирма не получает первый и третий контракт, но получает второй. Соответственным методом записаны и другие возможные события. Символ υ в дисциплине обозначает связку «ИЛИ». Если перевести приведенный пример на человеческий язык, то фирма получит или третий контракт, или второй, или первый. Подобным образом можно записывать и другие условия в дисциплине «Теория вероятности». Формулы и примеры решения задач, представленные выше, помогут сделать это самостоятельно.

Собственно, вероятность

Пожалуй, в этой математической дисциплине вероятность события - это центральное понятие. Существует 3 определения вероятности:

  • классическое;
  • статистическое;
  • геометрическое.

Каждое имеет свое место в изучении вероятностей. Теория вероятности, формулы и примеры (9 класс) в основном используют классическое определение, которое звучит так:

  • Вероятность ситуации А равняется отношению числа исходов, что благоприятствуют ее появлению, к числу всех возможных исходов.

Формула выглядит так: Р(А)=m/n.

А - собственно, событие. Если появляется случай, противоположный А, его можно записывать как Ā или А 1 .

m - количество возможных благоприятных случаев.

n - все события, которые могут произойти.

Например, А = «вытащить карту червовой масти». В стандартной колоде 36 карт, 9 из них червовой масти. Соответственно, формула решения задания будет иметь вид:

Р(А)=9/36=0,25.

В итоге вероятность того, что из колоды вытянут карту червовой масти, составит 0,25.

К высшей математике

Теперь стало немного известно, что такое теория вероятности, формулы и примеры решения заданий, которые попадаются в школьной программе. Однако теория вероятностей встречается и в высшей математике, которая преподается в вузах. Чаще всего там оперируют геометрическими и статистическими определениями теории и сложными формулами.

Очень интересна теория вероятности. Формулы и примеры (высшая математика) лучше начинать изучать с малого - со статистического (или частотного) определения вероятности.

Статистический подход не противоречит классическому, а немного расширяет его. Если в первом случае нужно было определить, с какой долей вероятности произойдет событие, то в этом методе необходимо указать, как часто оно будет происходить. Здесь вводится новое понятие «относительная частота», которую можно обозначить W n (A). Формула ничем не отличается от классической:

Если классическая формула вычисляется для прогнозирования, то статистическая - согласно результатам эксперимента. Возьмем, к примеру, небольшое задание.

Отдел технологического контроля проверяет изделия на качество. Среди 100 изделий нашли 3 некачественных. Как найти вероятность частоты качественного товара?

А = «появление качественного товара».

W n (A)=97/100=0,97

Таким образом, частота качественного товара составляет 0,97. Откуда взяли 97? Из 100 товаров, которые проверили, 3 оказались некачественными. От 100 отнимаем 3, получаем 97, это количество качественного товара.

Немного о комбинаторике

Еще один метод теории вероятности называют комбинаторикой. Его основной принцип состоит в том, что если определенный выбор А можно осуществить m разными способами, а выбор В - n разными способами, то выбор А и В можно осуществить путем умножения.

Например, из города А в город В ведет 5 дорог. Из города В в город С ведет 4 пути. Сколькими способами можно доехать из города А в город С?

Все просто: 5х4=20, то есть двадцатью разными способами можно добраться из точки А в точку С.

Усложним задание. Сколько существует способов раскладывания карт в пасьянсе? В колоде 36 карт - это исходная точка. Чтобы узнать количество способов, нужно от исходной точки «отнимать» по одной карте и умножать.

То есть 36х35х34х33х32…х2х1= результат не вмещается на экран калькулятора, поэтому его можно просто обозначить 36!. Знак «!» возле числа указывает на то, что весь ряд чисел перемножается между собой.

В комбинаторике присутствуют такие понятия, как перестановка, размещение и сочетание. Каждое из них имеет свою формулу.

Упорядоченный набор элементов множества называют размещением. Размещения могут быть с повторениями, то есть один элемент можно использовать несколько раз. И без повторений, когда элементы не повторяются. n - это все элементы, m - элементы, которые участвуют в размещении. Формула для размещения без повторений будет иметь вид:

A n m =n!/(n-m)!

Соединения из n элементов, которые отличаются только порядком размещения, называют перестановкой. В математике это имеет вид: Р n = n!

Сочетаниями из n элементов по m называют такие соединения, в которых важно, какие это были элементы и каково их общее количество. Формула будет иметь вид:

A n m =n!/m!(n-m)!

Формула Бернулли

В теории вероятности, так же как и в каждой дисциплине, имеются труды выдающихся в своей области исследователей, которые вывели ее на новый уровень. Один из таких трудов - формула Бернулли, что позволяет определять вероятность появления определенного события при независимых условиях. Это говорит о том, что появление А в эксперименте не зависит от появления или не появления того же события в ранее проведенных или последующих испытаниях.

Уравнение Бернулли:

P n (m) = C n m ×p m ×q n-m .

Вероятность (р) появления события (А) неизменна для каждого испытания. Вероятность того, что ситуация произойдет ровно m раз в n количестве экспериментов, будет вычисляться формулой, что представлена выше. Соответственно, возникает вопрос о том, как узнать число q.

Если событие А наступает р количество раз, соответственно, оно может и не наступить. Единица - это число, которым принято обозначать все исходы ситуации в дисциплине. Поэтому q - число, которое обозначает возможность ненаступления события.

Теперь вам известна формула Бернулли (теория вероятности). Примеры решения задач (первый уровень) рассмотрим далее.

Задание 2: Посетитель магазина сделает покупку с вероятностью 0,2. В магазин зашли независимым образом 6 посетителей. Какова вероятность того, что посетитель сделает покупку?

Решение: Поскольку неизвестно, сколько посетителей должны сделать покупку, один или все шесть, необходимо просчитать все возможные вероятности, пользуясь формулой Бернулли.

А = «посетитель совершит покупку».

В этом случае: р = 0,2 (как указано в задании). Соответственно, q=1-0,2 = 0,8.

n = 6 (поскольку в магазине 6 посетителей). Число m будет меняться от 0 (ни один покупатель не совершит покупку) до 6 (все посетители магазина что-то приобретут). В итоге получим решение:

P 6 (0) = C 0 6 ×p 0 ×q 6 =q 6 = (0,8) 6 = 0,2621.

Ни один из покупателей не совершит покупку с вероятностью 0,2621.

Как еще используется формула Бернулли (теория вероятности)? Примеры решения задач (второй уровень) далее.

После вышеприведенного примера возникают вопросы о том, куда делись С и р. Относительно р число в степени 0 будет равно единице. Что касается С, то его можно найти формулой:

C n m = n! / m!(n-m)!

Поскольку в первом примере m = 0, соответственно, С=1, что в принципе не влияет на результат. Используя новую формулу, попробуем узнать, какова вероятность покупки товаров двумя посетителями.

P 6 (2) = C 6 2 ×p 2 ×q 4 = (6×5×4×3×2×1) / (2×1×4×3×2×1) × (0,2) 2 × (0,8) 4 = 15 × 0,04 × 0,4096 = 0,246.

Не так уж и сложна теория вероятности. Формула Бернулли, примеры которой представлены выше, прямое тому доказательство.

Формула Пуассона

Уравнение Пуассона используется для вычисления маловероятных случайных ситуаций.

Основная формула:

P n (m)=λ m /m! × e (-λ) .

При этом λ = n х p. Вот такая несложная формула Пуассона (теория вероятности). Примеры решения задач рассмотрим далее.

Задание 3 : На заводе изготовили детали в количестве 100000 штук. Появление бракованной детали = 0,0001. Какова вероятность, что в партии будет 5 бракованных деталей?

Как видим, брак - это маловероятное событие, в связи с чем для вычисления используется формула Пуассона (теория вероятности). Примеры решения задач подобного рода ничем не отличаются от других заданий дисциплины, в приведенную формулу подставляем необходимые данные:

А = «случайно выбранная деталь будет бракованной».

р = 0,0001 (согласно условию задания).

n = 100000 (количество деталей).

m = 5 (бракованные детали). Подставляем данные в формулу и получаем:

Р 100000 (5) = 10 5 /5! Х е -10 = 0,0375.

Так же как и формула Бернулли (теория вероятности), примеры решений с помощью которой написаны выше, уравнение Пуассона имеет неизвестное е. По сути его можно найти формулой:

е -λ = lim n ->∞ (1-λ/n) n .

Однако есть специальные таблицы, в которых находятся практически все значения е.

Теорема Муавра-Лапласа

Если в схеме Бернулли количество испытаний достаточно велико, а вероятность появления события А во всех схемах одинакова, то вероятность появления события А определенное количество раз в серии испытаний можно найти формулой Лапласа:

Р n (m)= 1/√npq x ϕ(X m).

X m = m-np/√npq.

Чтобы лучше запомнилась формула Лапласа (теория вероятности), примеры задач в помощь ниже.

Сначала найдем X m , подставляем данные (они все указаны выше) в формулу и получим 0,025. При помощи таблиц находим число ϕ(0,025), значение которого 0,3988. Теперь можно подставлять все данные в формулу:

Р 800 (267) = 1/√(800 х 1/3 х 2/3) х 0,3988 = 3/40 х 0,3988 = 0,03.

Таким образом, вероятность того, что рекламная листовка сработает ровно 267 раз, составляет 0,03.

Формула Байеса

Формула Байеса (теория вероятности), примеры решения заданий с помощью которой будут приведены ниже, представляет собой уравнение, которое описывает вероятность события, опираясь на обстоятельства, которые могли быть связаны с ним. Основная формула имеет следующий вид:

Р (А|B) = Р (В|А) х Р (А) / Р (В).

А и В являются определенными событиями.

Р(А|B) - условная вероятность, то есть может произойти событие А при условии, что событие В истинно.

Р (В|А) - условная вероятность события В.

Итак, заключительная часть небольшого курса «Теория вероятности» - формула Байеса, примеры решений задач с которой ниже.

Задание 5 : На склад привезли телефоны от трех компаний. При этом часть телефонов, которые изготавливаются на первом заводе, составляет 25%, на втором - 60%, на третьем - 15%. Известно также, что средний процент бракованных изделий у первой фабрики составляет 2%, у второй - 4%, и у третьей - 1%. Необходимо найти вероятность того, что случайно выбранный телефон окажется бракованным.

А = «случайно взятый телефон».

В 1 - телефон, который изготовила первая фабрика. Соответственно, появятся вводные В 2 и В 3 (для второй и третьей фабрик).

В итоге получим:

Р (В 1) = 25%/100% = 0,25; Р(В 2) = 0,6; Р (В 3) = 0,15 - таким образом мы нашли вероятность каждого варианта.

Теперь нужно найти условные вероятности искомого события, то есть вероятность бракованной продукции в фирмах:

Р (А/В 1) = 2%/100% = 0,02;

Р(А/В 2) = 0,04;

Р (А/В 3) = 0,01.

Теперь подставим данные в формулу Байеса и получим:

Р (А) = 0,25 х 0,2 + 0,6 х 0,4 + 0,15 х 0,01= 0,0305.

В статье представлена теория вероятности, формулы и примеры решения задач, но это только вершина айсберга обширной дисциплины. И после всего написанного логично будет задаться вопросом о том, нужна ли теория вероятности в жизни. Простому человеку сложно ответить, лучше спросить об этом у того, кто с ее помощью не единожды срывал джек-пот.

Выходные данные сборника:

ПРИМЕНЕНИЕ ТЕОРИИ ВЕРОЯТНОСТИ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ В СТОИТЕЛЬСТВЕ

Каверин Александр Владиславович

студент Чайковского технологического института (филиал) Ижевского государственного технического университета имени М.Т. Калашникова, РФ, Пермский край, г. Чайковский

Е- mail : AleksVKaverin @ yandex . ru

Морозова Амина Рафкатовна

канд. техн. наук, доцент кафедры «Технологии и организация строительного производства» Чайковского технологического института (филиал) Ижевского государственного технического университета имени М.Т. Калашникова , РФ , Пермский край , г . Чайковский

USING OF PROBABILITY THEORY AND MATHEMATICAL STATISTICS IN THE CONSTRUCTION

Kaverin Aleksandr

student of Chaykovsky

Morozova Amina

candidate of Science, docent of Chaykovsky Institute of Technology (branch) Kalashnikov Izhevsk State Technical University, Russia, Perm Krai, Chaykovsky

АННОТАЦИЯ

Рассмотрена необходимость изучения математической статистики и теории вероятности и основные направления применения этих разделов математики в профессиональной деятельности студентов, обучающихся по направлению «Строительство».

ABSTRACT

The need to study of mathematical statistics and probability theory and basic direction of application of these sections of mathematics in professional activities of students enrolled in the direction of the construction were examined.

Ключевые слова: теория вероятности; математическая статистика; статистика в строительстве.

Keywords: probability theory; mathematical statistics; statistics in construction.

Целью дисциплины «Математика» является научить обучающихся математическому подходу к анализу прикладных (экономических) задач, а также математическим методам исследования и решения таких задач. Для каждого направления обучения существуют свои прикладные задачи. Область профессиональной деятельности бакалавров по направлению 08.03.01 «Строительство» включает: инженерные изыскания, проектирование, возведение, эксплуатацию, оценку и реконструкцию зданий и сооружений; инженерное обеспечение и знание оборудования строительных объектов и городских территорий; применение машин, оборудования и технологий для строительства и производства строительных материалов, изделий и конструкций . Поэтому одной из задач изучения дисциплины «Математика» для будущих строителей является - ориентация на использование математических методов при решении прикладных задач, возникающих в их профессиональной деятельности. Наглядные примеры применения математических методов при решении конкретных задач всегда стимулируют интерес у учащихся. Связь абстрактных чисел и решений с конкретной проблемой и реальной задачей доступней для понимания.

Показать возможность применения и необходимость изучения некоторых разделов математики легко без особых затрат времени на объяснения. Например, то, что дифференциальные вычисления используются, для нахождения скорости и ускорения, а интегральные вычисления - для нахождения площадей. Но есть разделы математики, которые изучаются без наглядной демонстрации применения законов и формул в силу отсутствия времени на объяснения, или недостаточного владения учащимися материалом по другим дисциплинам, в которых применение соответствующих математических методов возможно и необходимо. К одному из таких разделов можно отнести теорию вероятности и математическую статистику.

У студентов, обучающихся по специальности «Экономика и управление на предприятии (в строительстве)» есть дисциплина «Математическая статистика». Можно встретить много примеров применения статистических методов в экономике строительного комплекса нашей страны . Поэтому складывается впечатление, что статистика - это прежде всего удел экономистов и управленцев. Для чего же нужна статистика простым строителям? Давайте же разберемся, что это за раздел математики, и как он применяется при решении профессиональной деятельности бакалавров по направлению 270800 «Строительство».

Математическая статистика - это наука, разрабатывающая математические методы систематизации и использования статических данных для научных и практических выводов. Математическая статистика в большинстве своих разделов опирается на теорию вероятностей, позволяющую оценить надёжность и точность выводов, делаемых на основании ограниченного статистического материала. Например, оценить необходимый объём выборки для получения результатов требуемой точности при выборочном обследовании. Установление закономерностей, которым подчинены массовые случайные явления - результаты наблюдений, также основано на методах этого раздела математики - методе теории вероятностей статистических данных.

Первостепенной задачей математической статистики является указание способа сбора и группировки статистических сведений, полученных экспериментальным путём или в результате наблюдений.

Второй задачей математической статистики является разработка методов анализа статистических данных в зависимости от цели исследования. К этому разделу относятся:

а. оценка неизвестной вероятности события; оценка неизвестной функции распределения; оценка параметров распределения известного вида; оценка зависимости случайно величины от одной или нескольких случайных величин;

б. проверка статистических гипотез о виде неизвестного распределения или о величине параметров распределения, вид которого известен.

Современная математическая статистика разрабатывает также способы определения числа необходимых испытаний до начала исследования (планирование эксперимента), в ходе исследования (последовательный анализ) и решает многие другие задачи. Современную математическую статистику определяют как науку о принятии решений в условиях неопределённости.

Студенты, обучающиеся по направлению «Строительство», впервые сталкиваются с упоминанием таких задач при изучении геологии и механики грунтов, когда им рассказывают о камеральной обработке результатов полевых и лабораторных исследований грунтов, то есть о том, как проводят анализ и обработку результатов полевых и лабораторных работ, выделение инженерно-геологических элементов (ИГЭ), построение геологических колонок и разрезов, составление отчетов, включающих в себя выводы и рекомендации по инженерно-геологическим условиями участка проектируемого строительства. От этих результатов будут зависеть вид, размеры, глубина заложения и состав фундамента для строительства на конкретном участке. Именно камеральная обработка результатов полевых и лабораторных исследований позволяет связать проведенные инженерно-геологические работы с последующим строительством и возведением постройки. Поэтому понимание процесса обработки результатов геологического исследования важно для обучающихся и при этом является наглядным отображением применения методов теории вероятности и математической статистики.

В процессе обработки результатов исследуемые грунты предварительно разделяют на ИГЭ с учетом их происхождения, текстурно-структурных особенностей и вида. Характеристики грунтов в каждом предварительно выделенном ИГЭ анализируют с целью установить и исключить значения, резко отличающиеся от большинства значений, если они вызваны ошибками опытов или принадлежат другому ИГЭ. Окончательное выделение ИГЭ проводят на основе оценки характера пространственной изменчивости характеристик грунтов и их коэффициента вариации, а также сравнительного коэффициента вариации . При этом устанавливают, изменяются ли характеристики грунтов в пределах предварительно выделенного ИГЭ случайным образом или имеет место их закономерное изменение в каком-либо направлении. Для анализа используют физические характеристики (удельный и объемный вес, влажность, границу текучести и границу раскатывания глинистого грунта), а при достаточном количестве - и механические характеристики (угол внутреннего трения и удельного сцепления грунтов). Для оценки характера пространственной изменчивости характеристик их значения наносят на инженерно-геологические разрезы в точках определения, строят графики рассеяния, а также графики зондирования. Для выявления закономерного изменения характеристик строят точечные графики изменения их значений по направлению или применяют аппроксимирующие зависимости. Для осуществления всего этого процесса необходимо иметь представление о ряде терминов, положений и методов теории вероятности и математической статистики, таких как доверительный интервал и доверительная вероятность, закон распределения и среднеквадратичное отклонение, аппроксимирующие законы и ряд других понятий.

В последние годы математический аппарат теории вероятностей и математической статистики стал использоваться в методах расчета строительных конструкций. В связи со случайным характером внешних нагрузок и механических свойств материалов, в меньшей степени, но все таки, со случайными отклонениями геометрических параметров конструкций от проектных значений приходится искать пути решения задач расчета строительных конструкций с использованием статистических методов. Возможность достижения одного из предельных состояний здания или сооружения рассматривают как случайное событие, вероятность которого пытаются определить методами соответствующей теории. При этом предельное состояние может быть вызвано: превышением предела упругости в какой-либо точке конструкции, для которой остаточные деформации недопустимы; хрупким разрушением; возникновением слишком больших упругих деформаций. Наступление предельного состояния может включать временную составляющую, например результат постепенного необратимого накопления повреждений: развития усталостной трещины или механического износа, накопления пластических деформаций или деформаций ползучести.

Особое место занимают статистические методы в расчетах на устойчивость и колебания в строительной механике. Неправильность геометрических форм элементов конструкции изначально носит случайный характер. Поэтому при расчете элементов конструкции: стержней, пластин и оболочек устойчивой форме равновесия соответствует максимум вероятности ее реализации, неустойчивой - минимум вероятности. Оценка поведения реальной конструкции с учетом статистических методов, позволяет охарактеризовать её более полно, чем в рамках обычных представлений об устойчивости. Колебательные процессы, возникающие в сооружениях и конструкциях под действием подвижной нагрузки или в результате сейсмической активности можно рассматривать как явления, возникающие с определенной вероятностью. При их математическом моделировании возможно и необходимо учитывать статистические данные и рассматривать сам процесс как случайный. С подобными задачами обычно сталкиваются студенты старших курсов, или обучающиеся в магистратуре, и полноценное владение знаниями соответствующего раздела математики, наглядное представление об их использовании поможет не отпугнуть, а привлечь их к научно-исследовательской работе.

При этом хочется отметить, что главным применением теории вероятности и статистики в строительстве остается сбор и обработка данных. Существует много направлений их использования в данной отрасли. Помимо уже перечисленных стоит отметить статистический контроль качества продукции , который базируется на непостоянности характеристик материалов и готовой продукции, а также параметров технологических процессов. Результаты отдельных исследований и измерений объединяют и используют их совокупности для описания анализа производственного процесса, его оптимизации. Если статистические методы контроля качества включить в систему управления качеством продукции, то они могут значительно повысить его эффективность. При их применении будет накапливаться необходимая информация о степени вариации качества материалов, технологических процессов и готовой продукции, появится возможность уточнить существующие показатели и критерии качества, границы допусков и требования стандартов, что впоследствии позволит составить оптимальные условия изготовления продукции и управления ее качеством.

Другое важное направление использования математической статистики - экономическое. Учитывая, что это направление является важной составляющей развития любой отрасли, в том числе и связанной со строительством, его нельзя не упомянуть, а главное недооценить. Невозможно обойтись без статистики для оценки:

· темпов роста строительной отрасли, развития отдельных регионов, предприятий;

· эффективности использования той или иной технологии или продукции строительного производства;

· перспективы развития или эффективности внедрения мероприятий в строительной отрасли.

Например, в строительной сфере применяются такие методы как статистический контроль ввода в эксплуатацию жилых и производственных помещений , статистическое регулирование процессов строительства и другие методы.

Применение современных вычислительных и программных устройств позволяет существенно сократить процесс сбора и обработки информации, получения аппроксимирующих зависимостей и оценки результатов, позволяет доступно и наглядно продемонстрировать полученные выводы. Поэтому для применения методов теории вероятности и математической статистики в строительстве необходимо только их знание и желание использовать.

Список литературы :

  1. ГОСТ Р ИСО 12491-2011. Материалы и изделия в строительстве. Статистические методы контроля качества. М.: Стандартинформ, 2011. - 24 с.
  2. ГОСТ 20522-2012. Грунты. Методы статистической обработки результатов испытаний. М.: Стандартинформ, 2013. - 16 с.
  3. Федеральный государственный образовательный стандарт высшего профессионального образования по направлению подготовки 08.03.01 Строительство (уровень бакалавриата) [Текст]: (приказ Министерства образования и науки Российской Федерации, 2015 г.).
  4. Гмурман В.Е. Теория вероятностей и математическая статистика: Учеб. пособие для вузов/ В.Е. Гмурман. 9-е изд., стер. М.: Высш. шк., 2003. - 479 с.: ил.
  5. Леднева О.В. Показатели оперативной бизнес статистики в разрезе строительной отрасли России // Экономика. Статистика. Информатика. Вестник УМО. - 2014. - № 3. - С. 145-152.
  6. Статистические методы контроля качества продукции. /Л. Ноулер и др.: пер. с англ.-2-е русск. изд.-М.: Издательство стандартов, 1989. - 96 с.: ил.
  7. Сивориновский Б.Г., Апарин Н.С., Заварина Е.С. Статистика капитального строительства в исследованиях НИИ Статистики РОССТАТА // Вопросы статистики. - 2013. - № 7. - С. 13-19.

Начать по праву следует со статистической физики. Современное естествознание исходит из представления, согласно которому все явления природы носят статистический характер и законы могут получить точную формулировку только в терминах теории вероятностей. Статистическая физика стала основой всей современной физики, а теория вероятностей - ее математическим аппаратом. В статистической физике рассматриваются задачи, которые описывают явления, определяющиеся поведение большого числа частиц. Статистическая физика весьма успешно применяется в самых разных разделах физики. В молекулярной физике с ее помощью объясняют тепловые явления, в электромагнетизме - диэлектрические, проводящие и магнитные свойства тел, в оптике она позволила создать теорию теплового излучения, молекулярного рассеивания света. В последние годы круг приложений статистической физики продолжает расширяться.

Статистические представления позволили быстро оформить математическое изучение явлений ядерной физики. Появление радиофизики и изучение вопросов передачи радио сигналов не только усилили значение статистических концепций, но и привели к прогрессу самой математической науки - появлению теории информации.

Понимание природы химических реакций, динамического равновесия также невозможно без статистических представлений. Вся физическая химия, ее математический аппарат и предлагаемые ею модели являются статистическими.

Обработка результатов наблюдений, которые всегда сопровождаются и случайными ошибками наблюдений, и случайными для наблюдателя изменениями в условиях проведения эксперимента, еще в XIX столетии привела исследователей к созданию теории ошибок наблюдений, и эта теория полностью опирается на статистические представления.

Астрономия в ряде своих разделов использует статистический аппарат. Звездная астрономия, исследование распределения материи в пространстве, изучение потоков космических частиц, распределение на поверхности солнца солнечных пятен (центров солнечной активности) и многое другое нуждается в использовании статистических представлений.

Биологи заметили, что разброс размеров органов живых существ одного и того же вида прекрасно укладывается в общие теоретико-вероятностные законы. Знаменитые законы Менделя, положившие начало современной генетике, требуют вероятностно-статистических рассуждений. Изучение таких значительных проблем биологии, как передача возбуждения, устройство памяти, передача наследственных свойств, вопросы расселения животных на территории, взаимоотношения хищника и жертвы требует хорошего знания теории вероятностей и математической статистики.

Гуманитарные науки объединяют очень разнообразные по характеру дисциплины - от языкознания и литературы до психологии и экономики. Статистические методы все в более значительной мере начинают привлекаться к историческим исследованиям, особенно в археологии. Статистический подход используется для расшифровки надписей на языке древних народов. Идеи, руководившие Ж. Шампольоном при расшифровке древнего иероглифического письма, являются в основе своей статистическими. Искусство шифрования и дешифровки основано на использовании статистических закономерностей языка. Другие направления связаны с изучением повторяемости слов и букв, распределения ударений в словах, вычислением информативности языка конкретных писателей и поэтом. Статистические методы используются для установления авторства и изобличения литературных подделок. Например, авторство М.А. Шолохова по роману "Тихий Дон" было установлено с привлечением вероятностно-статистических методов. Выявление частоты появления звуков языка в устной и письменной речи позволяет ставить вопрос об оптимальном кодировании букв данного языка для передачи информации. Частота использования букв определяет соотношение количества знаков в наборной типографской кассе. Расположение букв на каретке пишущей машины и на клавиатуре компьютера, определяется статистическим изучением частоты сочетаний букв в данном языке.

Многие проблемы педагогики и психологии также требуют привлечения вероятностно-статистического аппарата. Вопросы экономики не могут не интересовать общество, поскольку с ней связаны все аспекты ее развития. Без статистического анализа невозможно предвидеть изменение количества населения, его потребностей, характера занятости, изменения массового спроса, а без этого невозможно планировать хозяйственную деятельность.

Непосредственно связаны с вероятностно-статистическими методами вопросы проверки качества изделий. Зачастую изготовление изделия занимает несравненно меньше времени, чем проверка его качества. По этой причине нет возможности проверить качество каждого изделия. Поэтому приходится судить о качестве партии по сравнительно небольшой части выборки. Статистические методы используются и тогда, когда испытание качества изделий приводит к их порче или гибели.

Вопросы, связанные с сельским хозяйством, уже давно решаются с широким использованием статистических методов. Выведение новых пород животных, новых сортов растений, сравнение урожайности - вот далеко не полный список задач, решаемых статистическими методами.

Можно без преувеличения сказать, что статистическими методами сегодня пронизана вся наша жизнь. В известном сочинении поэта-материалиста Лукреция Кара "О природе вещей" имеется яркое и поэтическое описание явления броуновского движения пылинок:

"Вот посмотри: всякий раз, когда солнечный свет проникает В наши жилища и мрак прорезает своими лучами, Множества маленьких тел в пустоте, ты увидишь, мелькая, Мечутся взад и вперед в лучистом сиянии света; Будто бы в вечной борьбе они бьются в сраженьях и битвах. В схватки бросаются вдруг по отрядам, не зная покоя. Или сходясь, или врозь беспрерывно опять разлетаясь. Можешь из этого ты уяснить себе, как неустанно Первоначала вещей в пустоте необъятной мятутся. Так о великих вещах помогают составить понятье Малые вещи, пути намечая для из достиженья, Кроме того, потому обратить тебе надо вниманье На суматоху в телах, мелькающих в солнечном свете, Что из нее познаешь ты материи также движенье"

Первая возможность экспериментального исследования соотношений между беспорядочным движением отдельных частиц и закономерным движением их больших совокупностей появилась, когда в 1827 году ботаник Р. Броун открыл явление, которое по его имени названо "броуновским движением". Броун наблюдал под микроскопом взвешенную в воде цветочную пыльцу. К своему удивлению он обнаружил, что взвешенные в воде частицы находятся в непрерывном беспорядочном движении, которое не удается прекратить при самом тщательном старании устранить какие либо внешние воздействия. Вскоре было обнаружено, что это общее свойство любых достаточно мелких частиц, взвешенных в жидкости. Броуновское движение - классический пример случайного процесса.



Поделиться