Диаграмма состояния p t критическая. Диаграмма фазовых состояний многокомпонентной системы


Введение

1. Типы фазовых диаграмм

2. Системы, имеющие важное значение в микроэлектронике

3. Твердая растворимость

4. Фазовые переходы

Литература


Введение

Фазовые диаграммы состояний являются неотъемлемой частью любого обсуждения свойств материалов в тех случаях, когда речь идет о взаимодействии различных материалов. Особенно фазовые диаграммы состояния важны в микроэлектронике, т.к. для изготовления выводов и пассивирующих слоев там приходится использовать большой набор различных материалов. В производстве интегральных микросхем в тесном контакте с различными металлами находится кремний, особое внимание уделим тем фазовым диаграммам, в которых в качестве одной из компонент фигурирует именно кремний.

В данном реферате рассмотрено какие бывают типы фазовых диаграмм, понятие фазового перехода, твердой растворимости, самые важные системы веществ для микроэлектроники.


1. Типы фазовых диаграмм

Однофазовые диаграммы состояний – это графики, на которых в зависимости от давления, объем и температуры изображают фазовое состояние только одного материала. Обычно не принято рисовать трехмерный график на двумерной плоскости – изображают его проекцию на плоскость температура – давление. Пример однофазной диаграммы состояний дан на рис. 1.

Рис. 1. Однофазная диаграмма состояний

На диаграмме четко разграничены области, в которых материал может существовать только в одном фазовом состоянии – как твердое тело, жидкость или газ. Вдоль разграниченных линий вещество может иметь два фазовых состояния (две фазы), находящихся в контексте друг с другом. Имеет место любая из комбинаций: твердое тело – жидкость, твердое тело – пар, жидкость – пар. В точке пересечения линий диаграммы, так называемой тройной точке, могут одновременно существовать все три фазы. Причем это возможно при одной-единственной температуре, поэтому тройная точка служит хорошей точкой отсчета температур. Обычно в качестве точки отсчета выступает тройная точка воды (например, в прецизионных измерениях с использованием термопар, где опорный спай контактирует с системой лед – вода – пар).

Двойная фазовая диаграмма (диаграмма состояния двойной системы) представляет состояние системы с двумя компонентами. На таких диаграммах по оси ординат откладывается температура, по оси абсцисс – процентное соотношение компонент смеси (обычно это или процент от общей массы (вес. %), или процент от общего числа атомов (ат. %)). Давление обычно полагается равным 1 атм. Если рассматривается жидкая и твердая фазы, измерением объема пренебрегают. На рис. 2. представлена типичная двухфазная диаграмма состояний для компонент A и B с использованием весового или атомного процента.

Рис. 2. Двухфазная диаграмма состояний

Буквой  обозначена фаза вещества A с растворенным веществом B,  означает фазу вещества B с растворенным в нем веществом A, а  +  означает смесь этих фаз. Буква (от liquid - жидкий) означает жидкую фазу, а L+ и L+ означают жидкую фазу плюс фаза или соответственно. Линии, разделяющие фазы, т. е. линии, на которых могут существовать различные фазы вещества, имеют следующие названия: солидус – линия, на которой одновременно существуют фазы  или  с фазами L+ и L+ соответственно; сольвус – линия, на которой одновременно сосуществуют фазы  и  +  или  и  + , и ликвидус – линия, на которой одновременно существует фаза L с фазой L+ или L+.

Точка пересечения двух линий ликвидуса часто является точкой наименьшей температуры плавления для всех возможных комбинаций веществ A и B и называется эвтектической точкой. Смесь с соотношением компонент в эвтектической точке называется эвтектической смесью (или просто эвтектикой).

Рассмотрим как происходит переход смеси из жидкого состояния (расплава) в твердое и как фазовая диаграмма помогает предсказать равновесную композицию всех фаз, существующих при данной температуре. Обратимся к рис. 3.

Рис. 3. Двухфазная диаграмма состояний, на которой показаны процессы отвердевания

Предположим, что вначале смесь имела состав C M при температуре T 1 , при температуре от T 1 до T 2 существует жидкая фаза, а при температуре T 2 одновременно существуют фазы L и . Состав присутствующей фазы L есть C М, состав фазы  есть C  1 . При дальнейшем снижении температуры до T 3 состав жидкой меняется вдоль кривой ликвидуса, а состав фазы  – вдоль кривой солидуса до пересечения с изотермой (горизонтальной линией) T 3 . Теперь состав фазы L есть C L , а состав фазы есть C  2 . Следует отметить, что состав C  2 должен иметь не только вещество, перешедшее в фазу при при температуре T 3 , но и все вещество, перешедшее в фазу  при более высокой температуре, должно иметь состав C  2 . Это выравнивание составов должно произойти путем твердотельной диффузии компонента A в существующую фазу , так что к моменту достижения температуры T 3 все вещество, находящееся в фазе , будет иметь состав C  2 . Дальнейшее снижение температуры приводит нас в эвтектическую точку. В ней фазы  и  существуют одновременно с жидкой фазой. При более низких температурах существуют только фазы  и . Образуется смесь фаз  и  состава C E с агрегатами  с начальным составом C  3 . Затем, выдерживая эту смесь длительное время при температуре ниже эвтектической, можно получить твердое тело. Образовавшееся твердое тело будет состоять из двух фаз. Состав каждой из фаз можно определить в точке пересечения изотермы с соответствующей линией сольвуса.

Только что было показано, как определить состав каждой из присутствующих фаз. Теперь рассмотрим задачу определения количества вещества в каждой фазе. Во избежания путаницы на рис. 4. еще раз приводится простая двухфазная диаграмма. Предположим, что при температуре T 1 состав расплава есть C M (имеется в виду компонента B), тогда при T 2 фаза L имеет состав C L , а фаза  будет иметь состав C s . Пусть M L – масса вещества, находящегося в твердом состоянии, а M S – масса вещества, находящегося в твердом состоянии. Условие сохранения суммарной массы приводит к следующему уравнению

(M L + M S)C M = M L C L + M S C S .


Рис. 4. Правило уровня

В нем нашел отражение тот факт, что общая масса вещества при температуре T 1 , умноженная на процент B, – есть общая масса вещества B. Она равна сумме масс вещества B, существующего в жидкой и в твердой фазах при температуре T 2 . Решая это уравнение, получаем

. (1)

Это выражение известно как «правило уровня». С помощью этого правила, зная начальный состав расплава и общую его массу, можно определить массы обеих фаз и количество вещества B в любой фазе для любого участка двухфазной диаграммы. Точно так же можно вычислить и

На рис. 5. приведен еще одни пример отвердения расплава. Снижение температуры от T 1 до T 2 приводит к смешиванию фаз L и  с составом соответственно C M иC  . По мере дальнейшего охлаждения состав L меняется вдоль ликвидуса, а состав  - вдоль солидуса, как было описано ранее. При достижении температуры T 3 состав  станет равным C М, и, как следует из правила уровня, при температуре, меньшей T 3 , жидкая фаза существовать не может. При температуре, меньшей T 4 , фазы  и  существуют как агрегаты фаз  и . Например, при температуре T 5 агрегаты фазы  будут иметь состав, определяемый пересечением изотермы T 5 и сольвуса . Состав  определяется аналогично – пересечением изотермы и сольвуса .

Рис. 5. Двухфазная диаграмма и процесс отвердевания количество вещества A, присутствующего в любой из фаз

Участки двухфазной диаграммы, называемые до сих пор  и , – это участки твердой растворимости: в области  растворено A и B. Максимальное количество A, которое может быть растворено в B при данной температуре, находятся в зависимости от температуры. При эвтектической или более высокой температуре может иметь место быстрое сплавливание A и B. Если полученный при этом сплав резко охладить, то атомы A могут быть «пойманы» в решетке B. Но если твердая растворимость при комнатной температуре намного ниже (это говорит о том, что при этой температуре рассматриваемый подход не слишком пригоден), то в сплаве могут возникать сильнейшие напряжения, существенно влияющие на его свойства (при наличии значительных напряжений возникают пересыщенные твердые растворы, и система находится не в равновесном состоянии, а диаграмма дает информацию только о равновесных состояниях). Иногда, такой эффект является желательным, например при упрочнении стали закалкой с получением мартенсита. Но в микроэлектронике его результат будет разрушительным. Поэтому легирование, т. е. внесение добавок в кремний до диффузии, проводится при повышенных температурах с таким расчетом, чтобы предупредить повреждение поверхности из-за избыточного сплавления. Если же количество легирующей примеси в подложке окажется выше предела твердой растворимости при любой температуре, то появляется вторая фаза и связанная с ней деформация.

2. Системы веществ, имеющие важное значение в микроэлектронике

Существует ряд материалов, которые полностью растворимы друг в друге. Примером может служить система из двух таких важных для микроэлектроники веществ, как кремний и германий. Система кремний – германий показана на рис. 6.

Рис. 6. Система кремний – германий

Диаграмма не имеет эвтектической точки. Подобная диаграмма называется изоморфной. Для того чтобы два элемента были изоморфными, они должны подчиняться правилам Хьюма – Ротери, т.е. иметь различие в значениях атомных радиусов не более чем на 15%, одинаковую вероятность, одинаковую кристаллическую решетку и, кроме того, приблизительно одинаковую электроотрицательность (электроотрицательность атома – это присущее ему семейство привлекать или захватывать лишние электроны, при ковалентных связях). Системы Cu – Ni, Au – Pt и Ag – Pd, также являются изоморфными.

Система Pb – Sn служит хорошим примером простой бинарной системы со значительной, хотя и ограниченной твердой растворимостью. Фазовая диаграмма состояний этой системы приведена на рис. 7. Точка пересечения солидуса и сольвуса называется граничной растворимостью, значение граничной растворимости как олова в свинце, так и свинца в олове будет большим. Данная система важна для микроэлектроники благодаря широкому применению оловянных-свинцовых припоев. Их двухфазной диаграммы этой системы видно, как изменение состава сплава меняет его температуру плавления. Когда при изготовлении микросхемы требуется провести несколько последовательных паек, то для каждой следующей пайки применяется припой с более низкой температурой плавления. Это делается для того, чтобы не потекли пайки, сделанные раньше.

Рис. 7. Фазовая диаграмма состояний системы свинец – олово

Для производства микросхем также важны свойства системы Au – Si, поскольку эвтектическая температура этой системы крайне мала по сравнению с температурами плавления чистого золота или чистого кремния (рис 9). Растворимости золота в кремнии и кремния в золоте слишком малы, чтобы их отобразить на обычной фазовой диаграмме состояний. Из-за низкой эвтектической температуры оказывается выгодно устанавливать кристаллы микросхем на золотые подложки, держатели или платы с золотыми контактными площадками, пользуясь эвтектической реакцией Au – Si в качестве основного механизма сварки (или пайки). Для пайки кремниевых кристаллов также используется золото, содержащее несколько процентов германия.

Комбинации элементов, образующих химические соединения, имеют более сложные диаграммы состояний. Их можно разбить на две (или несколько) более простых диаграммы, каждая из которых относится к определенной паре соединений или соединению и элементов. Например, AuAl 2 образуется при соединении 33% (процент атомный) золота с алюминием при температуре менее 1060 о (рис. 2.10). Слева от этой линии сосуществует AuAl 2 и фаза чистого алюминия. Соединения, подобные AuAl 2 , называются интерметаллическими и образуются при соответствующем стехиометрическом соотношении двух элементов. Интерметаллические соединения характеризуются высокой температурой плавления, сложной кристаллической структурой и, кроме того, отличаются твердостью и хрупкостью.

Фазовая диаграмма состояний Au – Al может быть разбита на две или больше диаграмм, например на диаграмму Al – AuAl 2 и диаграмму AuAl 2 – Au.


Рис. 8. Система алюминий – кремний

Диаграмма системы Au – Al, показанная на рис. 2.10, имеет в микроэлектронике крайне важное значение, поскольку обычно золотые провода соединяются с алюминиевым слоем металлизации, расположенным поверх кремния. Здесь указано несколько важных интерметаллических соединений: AuAl 2 , Au 2 Al, Au 5 Al 2 и Au 4 Al. В проводниках связей Au – Al они могут присутствовать все.


Рис. 9. Система золото – кремний

Рис. 10. Система золото – алюминий

3. Твердая растворимость

Граничная растворимость большинства легирующих примесей в кремнии крайне мала и в действительности не является максимальной растворимостью. На рис. 11 представлена типичная кривая солидуса для примеси без кремния. Заметьте, что растворимость растет с температурой до определенного значения, а затем убывает до нуля при температуре плавления кремния. Такая кривая называется ретроградной кривой растворимости. Уточненная версия этой диаграммы в окрестности точки плавления кремния показана на рис. 12.

Рис. 11 Ретроградная растворимость кремния

Рис. 12 Типичная фазовая диаграмма кремния

Если состав расплава кремния равен C M в процентах массы растворенного вещества, то кремний будет застывать с содержанием растворенного вещества kC M , где k – коэффициент сегрегации (k=C S /C L). Когда концентрация в твердом теле достигнет значения C M при замораживании, концентрация в жидком растворе будет равна C M /k, поскольку соотношение концентраций в жидком и твердом растрах должна быть равна k. Наклон линии солидуса, следовательно, равен

,

а наклон ликвидуса равен

.

Отношение наклонов ликвидуса и солидуса оказывается равным коэффициенту сегрегации

. (2)

4. Фазовые переходы

Переходы из одного фазового состояния в другое при изменении параметров системы.

Фазовые переходы первого рода (испарение, конденсация, плавление, кристаллизация, переходы из одной кристаллической модификации в другую).

Кристаллическое состояние веществ классифицируется по семи сингониям (триклинная, моноклинная, ромбическая, тетрагональная, тригональная или ромб…., гексагональная, кубическая) при этом расположение атомов в этих сингониях характеризуется 14 типами решеток (решетки Браве). Степень упаковки атомов в этих решетках различна:


Простая кубическая f = 0,52

Объемно центрировая кубическая f = 0,68

Гранецентрированная кубическая f = 0,74

Гексагональная плотная упаковка f = 0,74

Из этих данных следует очень важный вывод, при полиморфных превращениях (изменение типа кристаллической решетки) происходит изменение объема и следовательно физико-химических свойств материалов.

При переходах первого рода в точке перехода сосуществует две фазы.

A  B 

а) переход осуществляется при определенной температуре T пер

б) при переходе изменяются скачком первые производные энергии: энтальпии, энтропии, объема (следовательно значит и плотности)


Фазовые переходы второго рода

При переходах второго рода первые производные свободной энергии, энтальпии, энтропии, объема, плотности изменяются монотонно.

Титанат бария – кубическая структура –> тетрагональный типичный пьезоэлектрик.

MnO – антиферромагнетик при 117 К переходит в парамагнитную фазу.

1. Согласно классификации фазовых превращений, предложенной в 1933 г. Эрипреситом, превращения подразделяются на превращения (переходы) I и II родов.

Переходы первого рода характеризуются тем, что первые производные термодинамического потенциала  по температуре и давлению изменяются скачкообразно

здесь S – энтропия, V – объем

Так как термодинамический потенциал при фазовых переходе меняется непрерывно определяется выражением

то энергия U также должна изменяться скачком. Так как


то теплота перехода

равна произведению температуры на разность энтропии фаз, т. е. скачкообразное изменение или поглощение теплоты.

Важным является непрерывное изменение термодинамического потенциала. Функция (Т) и (Т) не изменяют особенностей вблизи точки фазового перехода, при этом с обеих сторон точки фазового перехода имеются минимумы термодинамического потенциала.

Этой особенностью объясняется возможность перегрева или переохлаждения фаз в случае фазовых переходов в системе.

Определим взаимосвязи между скачками термодинамических функций и . После дифференцировании по температуре соотношение Функция (Р,Т) = (Р,Т) с учетом выражения для S, V и q получим

Эта известная формула Клайперона-Клаузиса. Она позволяет определить изменение давлений, находящихся в равновесии фаз при изменении температуры либо изменении температуры перехода между двумя фазами при изменении давления. Скачкообразное изменение объема приводит к отсутствию определенной связи между структурой и системой фаз, преобразующихся при фазовом переходе первого рода, которые в связи с этим изменяются скачком.

Типичными для фазовых переходов первого рода являются переходы между агрегатными состояниями вещества, аллотропическими превращения многие фазовые превращения в многокомпонентных материалах.

Принципиальное отличие фазовых переходов второго рода от фазовых переходов первого рода заключается в следующем: переходы второго рода характеризуются как непрерывностью изменения термодинамического потенциала, так и непрерывностью изменения производных термодинамического потенциала .

Химическое равновесие

Термодинамическая функция – функция состояния, определяющая изменение термодинамических потенциалов при изменении числа частиц в системе. Другими словами – есть функция, которая определяет направление и предел самопроизвольного перехода компонента из одной фазы в другую при соответствующих превращениях и условиях (T, P, V, S, n i).

Термодинамические потенциалы связаны с друг другом следующими соотношениями

Количество вещества в граммах; - количества вещества в молях;

М – молекулярный вес соответствующего вещества.

Для теории твердых растворов, на которых работают все приборы микроэлектроники огромное значение имеет развитый Гиббсом метод химических потенциалов. Химическое равновесие можно определить с помощью химических потенциалов.

Химический потенциал характеризуется энергией, приходящейся на 1 атом

Химический потенциал; G – энергия Гиббса;

N o – число Авогадро, N А – L = моль -1

т. е. (Р,Т) = (Р,Т)

Обе кривые характеризуют монотонное убывание с температурой, определяя значение энтропии фаз


Фазовые диаграммы состояний являются неотъемлемой частью обсуждения свойств материалов, когда речь идет о взаимодействии различных материалов.

Однофазовые диаграммы состояний изображают фазовое состояние только одного материала.

Двойная фазовая диаграмма (диаграмма состояния двойной системы) представляет состояние системы с двумя компонентами.

Комбинации элементов, образующих химические соединения, имеют более сложные диаграммы состояний.


Литература

1. Ормонт Б. Ф. Введение в физическую химию и кристаллохимию полупроводников. – М.: Высшая школа, 1973.

2. Физическое металловедение / Под редакцией Кана Р., вып. 2. Фазовые превращения. Металлография. – М.: Мир, 1968.

3. Ю.М. Таиров, В.Ф. Цветков «Технология полупроводниковых и диэлектрических материалов», - М.: Высшая школа, 1990р.

4. «Практикум по полупроводникам и полупроводниковим приборам», /Под ред. Шалимовой К.В. – М.: Высшая школа, 1968р.

(1. Правило фаз. 2. Понятия о фазовых диаграммах равновесия. 3. Правило отрезков. 4. Диаграмма состояния III рода )

1. Правило фаз

При изменении температуры или концентрации компонентов система (сплав) может находиться в различных состояниях. В процессе перехода из одного состояния в другое в нем совершаются фазовые превращения – появляются новые или исчезают существующие фазы.

Возможность изменения состояния системы, т. е. числа и химического состава фаз, определяется ее вариантностью – числом степеней свободы .

Определение. Число степеней свободы системы - это число внешних (температура, давление) и внутренних (концентрация) факторов, которое можно изменять без изменения числа фаз системы.

Уравнение правила фаз (закон Гиббса ) для системы при постоянном давлении, образованной несколькими компонентами, имеет вид

С = К – Ф + 1, (3.1)

где С – число степеней свободы (вариантность системы); К – число компонентов; Ф – число фаз.

Так как число степеней свободы всегда больше или равно нулю, т.е. С  0, то между числом компонентов и фаз выполняется условие

Ф  К + 1, (3.2)

устанавливающее максимально возможное число равновесных фаз в сплавах.

2. Понятия о фазовых диаграммах равновесия

Фазовые диаграммы равновесия (диаграммы состояния ) используются при исследовании структуры сплавов, выборе режимов их термообработки и др.

Фазовая диаграмма равновесия показывает, какие фазы существуют при заданных условиях (концентрация компонентов и температура) в равновесных условиях. По диаграмме можно определить агрегатное состояние, количество и химический состав фаз, а также структурно-фазовое состояние сплава в зависимости от температуры и концентрации образующих его компонентов.

Фазовая диаграмма равновесия представляет собой «график», на оси абсцисс которого отложена концентрация компонентов (суммарное содержание компонентов в любом сплаве равно 100 %), а по оси ординат – температура. Крайние точки (левая и правая) на оси абсцисс диаграммы соответствуют чистым компонентам. Любая другая точка на этой оси отвечает определенной концентрации компонентов сплава.

Например, для двухкомпонентного сплава (рис. 3.1) точка А соответствует чистому, т.е. содержащему 100 %, компоненту А, точка В – чистому компоненту В, точка С – сплаву, содержащему 75 % А и 25 % В, точка D – сплаву, содержащему 75 % В и 25 % А. На оси концентраций указывается изменение содержания одного из компонентов (на рис. 3.1 – компонента В).

Рис. 3.1 – Координаты фазовой диаграммы равновесия

Для построения диаграмм состояния исследуют сплавы различного состава при разных температурах. Традиционным методом построения диаграмм является метод термического анализа, который позволяет получать кривые охлаждения сплавов в координатах «температура – время» – кривые охлаждения (сплавов).

Охлаждение сплавов производят с очень низкой скоростью, т. е. в условиях, приближенных к равновесным.

Построение диаграмм охлаждения выполняют в следующей последовательности:

    в координатах «температура – концентрация» проводят вертикальные линии, соответствующие сплавам исследованных составов (чем меньше шаг по концентрации, тем точнее диаграмма);

    для этих сплавов строят кривые охлаждения;

    на вертикальных линиях точками наносят температуру, при которой изменяется агрегатное состояние или строение сплавов;

    точки одинаковых превращений разных сплавов соединяют линиями, которые ограничивают области одинаковых состояний системы.

Такие построения мы выполняли в лабораторной работе № 1 при построении диаграммы состояния «цинк – олово» (« Zn Sn »).

Вид диаграммы зависит от того, как взаимодействуют между собой компоненты в твердом и жидком состояниях.

Простейшими диаграммами являются бинарные (двойные или двухкомпонентные) системы (многокомпонентные системы могут быть сведены к ним при фиксированных значениях «избыточных» компонентов ), к основным видам которых относятся диаграммы состояния для сплавов, представляющих собой в твердом состоянии (при нормальной температуре):

а) механические смеси из чистых компонентов (I рода);

б) сплавы с неограниченной растворимостью компонентов (II рода);

в) сплавы с ограниченной растворимостью компонентов (III рода);

г) сплавы с образованием химического соединения (IV рода).

В лекции рассмотрим построение фазовых диаграмм равновесия на примере диаграммы состояния III рода – сплава с ограниченной растворимостью компонентов (остальные виды диаграмм рассмотрены на лабораторных работах).

Но предварительно обсудим важное для анализа подобных диаграмм правило отрезков (рычага).

Анализ фазовых диаграмм

Двухфазные линии, как правило, либо соединяют две тройные точки, либо тройную точку с точкой на оси ординат, отвечающую нулевому давлению. Исключение составляет линия жидкость-газ, заканчивающаяся в критической точке . При температурах выше критической различие между жидкостью и паром исчезает.

Сечения и проекции диаграмм бинарных систем

Диаграммы температура-состав

Диаграммы бинарных систем

Неограниченная растворимость в твёрдом состоянии

Эвтектические и эвтектоидные превращения

Сплавы, образующие химические соединения


Wikimedia Foundation . 2010 .

Смотреть что такое "Фазовая диаграмма" в других словарях:

    - (см. ДИАГРАММА СОСТОЯНИЯ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983. ФАЗОВАЯ ДИАГРАММА … Физическая энциклопедия

    То же, что диаграмма состояния … Большой Энциклопедический словарь

    фазовая диаграмма - Термодинамическая диаграмма, в которой по осям координат откладываются давление и температура и наносятся кривые фазового равновесия. [Сборник рекомендуемых терминов. Выпуск 103. Термодинамика. Академия наук СССР. Комитет научно технической… … Справочник технического переводчика

    ФАЗОВАЯ ДИАГРАММА, графическое изображение условий, в которых существуют различные равновесные ФАЗЫ вещества. Например, кривая зависимости ТЕМПЕРАТУРЫ ПЛАВЛЕНИЯ от ДАВЛЕНИЯ у чистого твердого вещества делит диаграмму на две части. Точки в одной… … Научно-технический энциклопедический словарь

    фазовая диаграмма - fazių pusiausvyros diagrama statusas T sritis Standartizacija ir metrologija apibrėžtis Termodinaminės sistemos fazių pusiausvyros grafinis vaizdas. atitikmenys: angl. phase equilibrium diagram; thermodynamic phase diagram vok.… …

    фазовая диаграмма - Phase Diagram Фазовая диаграмма (диаграмма состояния) Графическое изображение соотношения между параметрами состояния термодинамически равновесной системы (температурой, давлением, составом и др.). Фазовая диаграмма позволяет определить,… … Толковый англо-русский словарь по нанотехнологии. - М.

    Phase diagram Фазовая диаграмма. Графическое представление критических температур и пределов содержания фаз в сплаве или керамической системе, существующих при нагревании или охлаждении. Фазовая диаграмма может быть диаграммой равновесного… … Словарь металлургических терминов

    То же, что диаграмма состояния. * * * ФАЗОВАЯ ДИАГРАММА ФАЗОВАЯ ДИАГРАММА, то же, что диаграмма состояния (см. ДИАГРАММА СОСТОЯНИЯ) … Энциклопедический словарь

    Термин фазовая диаграмма Термин на английском phase diagram Синонимы диаграмма состояния Аббревиатуры Связанные термины критическая температура мицеллообразования, спинодальный распад Определение графическое изображение состояний… … Энциклопедический словарь нанотехнологий

    фазовая диаграмма - fazių diagrama statusas T sritis Standartizacija ir metrologija apibrėžtis Daugiafazės termodinaminės sistemos būsenų diagrama. atitikmenys: angl. phase diagram vok. Gleichgewichtsdiagramm, n; Phasendiagramm, n; Zustandsdiagramm, n;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

Книги

ДИАГРАММА ФАЗОВАЯ, графическое изображение условий (температуры, давления, химического состава и др.), при которых в равновесной термодинамической системе, состоящей из одного или нескольких заданных веществ (независимых компонентов системы), существуют однородные состояния вещества (фазы) с различающимися физико-химическими свойствами. Как эквивалентный термину «диаграмма фазовая» используется термин «диаграмма состояния» (главным образом в России и Германии). Однако диаграммой состояния нередко, особенно в англоязычной литературе, называют также графики, не отражающие непосредственно фазовые равновесия в системе.

Фазы представлены на диаграмме фазовой в виде областей, ограниченных кривыми или поверхностями, расположенными в пространстве независимых термодинамических переменных. Обычно это температура Т, давление Р, мольные доли компонентов системы х, функции этих и других переменных, такие как отношения количеств или концентраций компонентов, плотности р или мольные объёмы V m , парциальные давления или химические потенциалы веществ μ. При отсутствии внешних силовых полей число координатных осей полной диаграммы фазовой открытой системы с с компонентами равно с+2. Для изображения многомерных диаграмм фазовых на плоскости пользуются их сечениями и проекциями, построенными при определённых ограничениях, наложенных на некоторые из независимых переменных, часто в сочетании со специально выбранными системами координат (координаты Дженике, треугольники Гиббса - Розебома и др.). Диаграмма фазовая показывает: какие индивидуальные вещества, жидкие, твёрдые или газовые растворы образуют заданные компоненты системы; при каких условиях такие фазы и их гетерогенные смеси являются термодинамически устойчивыми; при каких значениях термодинамических переменных в системе происходят фазовые превращения веществ. Диаграммы фазовые, содержащие данные о химическом составе фаз, позволяют также определить относительные количества сосуществующих фаз. Такие сведения необходимы для решения многих научных и практических задач и широко используются в химии, металлургии, материаловедении, геохимии и других областях науки и технологии.

Координатами диаграммы фазовой могут быть термодинамические переменные двух видов - параметры термического, механического и химического равновесий Т, Р, μ, имеющие одинаковые значения во всех частях равновесной системы, или (обычно различающиеся в разных фазах) обобщённые плотности экстенсивных свойств, такие как х, р, V m и другие свойства, равные отношениям экстенсивных величин к количеству, массе или объёму вещества в системе. В связи с этим различают три типа диаграмм фазовых. Диаграммы одного и того же типа являются изоморфными: они имеют одинаковые топологического особенности независимо от числа компонентов и значений конкретных переменных на координатных осях.

На диаграммах фазовых типа (Т, Р), (Т, μ i), (μ i , μ j) и им подобных, с интенсивными параметрами равновесия, представлены только фазовые области и разделяющие их линии (поверхности), которые обозначают границы стабильности отдельных фаз. Точки пересечения линий соответствуют условиям равновесия более двух фаз. Так, тройная точка на (Т, Р)-диаграмме однокомпонентной системы указывает на условия устойчивого сосуществования трёх фаз.

При наличии оси концентраций, мольных свойств, плотностей, как, например, на диаграмме фазоваой (Т, х), (Р, х), (μ i , х), (Т, р), области стабильности фаз разделены другими областями, которые отображают существование гетерогенных смесей равновесных фаз. Диаграмма фазовая такого типа для двухкомпонентной системы кадмий - цинк показана на рисунке. Диаграмма этой двухкомпонентной системы имеет две координатные оси, а не четыре, как того требует приведённое выше выражение с + 2, поскольку при её построении использовано условие постоянства Р и два независимых переменных количества Cd и Zn заменены одной концентрацией x Zn (x Cd = 1 - x Zn). Верхняя часть рисунка представляет собой диаграмму равновесия жидкость - пар. Ломаная кривая, соединяющая точки плавления чистых компонентов, называется линией ликвидуса, она показывает «диаграмму плавкости» системы. Прямые (коноды), проведённые в гетерогенной области такой диаграммы фазовой между границами двух сосуществующих фаз параллельно оси концентраций (смотри эвтектическую коноду на рисунке), позволяют при любом заданном компонентном составе системы определить количества сосуществующих фаз («правило рычага»).

В диаграмме фазовой третьего типа - (x i , x j), (x i ,р), (мольная энтропия, х), (мольная энтальпия, х) и др. - координатами являются только обобщённые плотности экстенсивных термодинамических свойств. На этих диаграммах также представлены гетерогенные смеси фаз и коноды, но, в отличие от двух других типов диаграмм фазовых, в данном случае состояние гетерогенных смесей отображается плоской или объёмной фигурой (треугольником, тетраэдром) и есть возможность определять количественный фазовый состав системы при равновесии трёх и более фаз («правило центра тяжести» фигуры).

Диаграммы фазовые изучают экспериментально и рассчитывают методами химической термодинамики по данным о термодинамических свойствах составляющих систему веществ. Теоретические основания для построения диаграмм фазовых даны Дж. Гиббсом в 1880-х годах. Им же сформулировано «правило фаз» (смотри Гиббса правило фаз), широко применяющееся при экспериментальном изучении фазовых равновесий и диаграмм фазовых: при фиксированных Т и Р число равновесно сосуществующих фаз f не может превышать число компонентов системы более чем на два, f ≤ с + 2.

Лит.: Палатник Л. С., Ландау А. И. Фазовые равновесия в многокомпонентных системах. Хар., 1961; Кауфман Л., Бернстейн Х. Расчет диаграмм состояния [металлических систем] с помощью ЭВМ. М., 1972; Физическое металловедение / Под редакцией Р. Кана, П. Хаазена. М., 1987. Т. 2.



Поделиться