Проекция точки на плоскость уравнение. Проецирование точки

Проекция точки на плоскость является частным случаем общей задачи нахождения проекции точки на поверхность. В силу простоты вычисления проекции точки на касательную к поверхности плоскость используется в качестве нулевого приближения при решении общей задачи.

Рассмотрим задачу проецирования точки на плоскость, заданную радиус-вектором

Будем считать, что векторы не коллинеарные. Допустим, что в общем случае векторы не ортогональны и имеют не единичную длину. Плоскость проходит через точку в которой параметры равны нулю, а векторы определяют параметрические направления. Заданная точка имеет единственную проекцию на плоскость (4.6.1). Построим единичную нормаль к плоскости

Рис. 4.6.1. Проекция точки на плоскость s(u, v)

Вычислим радиус-вектор проекции точки на плоскость как разность радиус-вектора проецируемой точки и составляющей вектора параллельной нормали к плоскости,

(4.6.4)

На рис. 4.6.1 показаны векторы плоскости ее начальная точка и проекция заданной точки.

Параметры и длины проекций связаны уравнениями

где косинус угла между векторами определяется по формуле (1.7.13).

Из системы этих уравнений найдем параметры проекции точки на плоскость

(4.6.6)

где - коэффициенты первой основной квадратичной формы плоскости (1.7.8), они же ковариантные компоненты метрического тензора поверхности, - контравариантные компоненты метрического тензора поверхности. Если векторы ортогональные, то формулы (4.6.6) и (4.6.7) примут вид

Расстояние от точки до ее проекции на плоскость в общем случае вычисляется как длина вектора . Расстояние от точки до ее проекции на плоскость можно определить, не вычисляя проекцию точки, а вычислив проекцию вектора на нормаль к плоскости

(4.6.8)

Частные случаи.

Проекции точки на некоторые аналитические поверхности могут быть найдены без привлечения численных методов. Например, чтобы найти проекции точки на поверхность кругового цилиндра, конуса, сферы или тора, нужно перевести проецируемую точку в местную систему координат поверхности, где легко найти параметры проекций. Аналогично могут быть найдены проекции на поверхности выдавливания и вращения. В некоторых частных случаях положения проецируемой точки ее проекции могут быть легко найдены и на другие поверхности.

Общий случай.

Рассмотрим задачу проецирования точки на поверхность в общем случае. Пусть требуется найти все проекции точки на поверхность . Каждая искомая точка поверхности удовлетворяет системе двух уравнений

Система уравнений (4.6.9) содержит две неизвестные величины - параметры u и v. Эта задача решается так же, как и задача нахождения проекций заданной точки на кривую.

На первом этапе определим нулевые приближения параметров поверхности для проекций точки, а на втором этапе найдем точные значения параметров, определяющие проекции заданной точки на поверхность

Пройдем по поверхности с шагами вычисляемыми по формулам (4.2.4) и (4.2.5), описанным выше способом движения по параметрической области. Обозначим параметры точек, через которые мы пройдем, через . В каждой точке будем вычислять скалярные произведения векторов

(4.6.10)

Если искомое решение лежит вблизи точки с параметрами , то будут иметь разные знаки, а также и будут иметь разные знаки. Смена знаков скалярных произведений говорит о том, что рядом находится искомое решение. За нулевое приближение параметров примем значения Начиная с нулевого приближения параметров, одним из методов решения нелинейных уравнений найдем решение задачи с заданной точностью. Например, в методе Ньютона на итерации приращения параметров проекции найдутся из системы линейных уравнений

где частные производные радиус-вектора по параметрам. Следующее приближение параметров проекции точки равны . Процесс уточнения параметров закончим, когда на очередной итерации выполнятся неравенства , где - заданная погрешность. Таким же образом найдем все остальные корни системы уравнений (4.6.9).

Если требуется найти только ближайшую проекцию заданной точки на поверхность, то можно пройти по тем же точкам геометрического объекта и выбрать из них ближайшую к заданной точке. Параметры ближайшей точки и следует выбрать в качестве нулевого приближения решения задачи.

Проекция точки на поверхность в заданном направлении.

В определенных случаях возникает задача определения проекции точки на поверхность не по нормали к ней, а вдоль заданного направления. Пусть направление проецирования задано вектором единичной длины q. Построим прямую линию

(4.6.12)

проходящую через заданную точку и имеющую направление заданного вектора. Проекции точки на поверхность в заданном направлении определим как точки пересечения поверхности с прямой (4.6.12), проходящей через заданную точку в заданном направлении.


Алгебраическая проекция вектора на какую-либо ось равна произведению длины вектора на косинус угла между осью и вектором:

Пр a b = |b|cos(a,b) или

Где a b - скалярное произведение векторов , |a| - модуль вектора a .

Инструкция . Для нахождения проекции вектора Пp a b в онлайн режиме необходимо указать координаты векторов a и b . При этом вектор может быть задан на плоскости (две координаты) и в пространстве (три координаты). Полученное решение сохраняется в файле Word . Если векторы заданы через координаты точек, то необходимо использовать этот калькулятор .

Классификация проекций вектора

Виды проекций по определению проекция вектора

  1. Геометрическая проекция вектора AB на ось (вектор) называется вектор A"B" , начало которого A’ есть проекция начала A на ось (вектор), а конец B’ – проекция конца B на ту же ось.
  2. Алгебраическая проекция вектора AB на ось (вектор) называется длина вектора A"B" , взятая со знаком + или - , в зависимости от того, имеет ли вектор A"B" то же направление, что и ось (вектор).

Виды проекций по системе координат

Свойства проекции вектора

  1. Геометрическая проекция вектора есть вектор (имеет направление).
  2. Алгебраическая проекция вектора есть число.

Теоремы о проекциях вектора

Теорема 1 . Проекция суммы векторов на какую-либо ось равна проекции слагаемых векторов на ту же ось.

AC" =AB" +B"C"


Теорема 2 . Алгебраическая проекция вектора на какую-либо ось равна произведению длины вектора на косинус угла между осью и вектором:

Пр a b = |b|·cos(a,b)

Виды проекций вектора

  1. проекция на ось OX.
  2. проекция на ось OY.
  3. проекция на вектор.
Проекция на ось OX Проекция на ось OY Проекция на вектор
Если направление вектора A’B’ совпадает с направлением оси OX, то проекция вектора A’B’ имеет положительный знак.
Если направление вектора A’B’ совпадает с направлением оси OY, то проекция вектора A’B’ имеет положительный знак.
Если направление вектора A’B’ совпадает с направлением вектора NM, то проекция вектора A’B’ имеет положительный знак.
Если направление вектора противоположно с направлением оси OX, то проекция вектора A’B’ имеет отрицательный знак.
Если направление вектора A’B’ противоположно с направлением оси OY, то проекция вектора A’B’ имеет отрицательный знак.
Если направление вектора A’B’ противоположно с направлением вектора NM, то проекция вектора A’B’ имеет отрицательный знак.
Если вектор AB параллелен оси OX, то проекция вектора A’B’ равна модулю вектора AB.

Если вектор AB параллелен оси OY, то проекция вектора A’B’ равна модулю вектора AB.

Если вектор AB параллелен вектору NM, то проекция вектора A’B’ равна модулю вектора AB.

Если вектор AB перпендикулярен оси OX, то проекция A’B’ равна нулю (нуль-вектор).

Если вектор AB перпендикулярен оси OY, то проекция A’B’ равна нулю (нуль-вектор).

Если вектор AB перпендикулярен вектору NM, то проекция A’B’ равна нулю (нуль-вектор).

1. Вопрос: Может ли проекция вектора иметь отрицательный знак. Ответ: Да, проекций вектора может быть отрицательной величиной. В этом случае, вектор имеет противоположное направление (см. как направлены ось OX и вектор AB)
2. Вопрос: Может ли проекция вектора совпадать с модулем вектора. Ответ: Да, может. В этом случае, векторы параллельны (или лежат на одной прямой).
3. Вопрос: Может ли проекция вектора быть равна нулю (нуль-вектор). Ответ: Да, может. В этом случае вектор перпендикулярен соответствующей оси (вектору).

Пример 1 . Вектор (рис. 1) образует с осью OX (она задана вектором a) угол 60 о. Если OE есть единица масштаба, то |b|=4, так что .

Действительно, длина вектора (геометрической проекции b) равна 2, а направление совпадает с направлением оси OX.

Пример 2 . Вектор (рис. 2) образует с осью OX (с вектором a) угол (a,b) = 120 o . Длина |b| вектора b равна 4, поэтому пр a b=4·cos120 o = -2.

Действительно, длина вектора равна 2, а направление противоположно направлению оси.

При решении геометрических задач в пространстве часто возникает проблема определения расстояния между плоскостью и точкой. В некоторых случаях это необходимо для комплексного решения. Эту величину можно вычислить, если найти проекцию на плоскость точки. Рассмотрим этот вопрос подробнее в статье.

Уравнение для описания плоскости

Перед тем как перейти к рассмотрению вопроса касательно того, как найти проекцию точки на плоскость, следует познакомиться с видами уравнений, которые задают последнюю в трехмерном пространстве. Подробнее - ниже.

Уравнением общего вида, определяющим все точки, которые принадлежат данной плоскости, является следующее:

A*x + B*y + C*z + D = 0.

Первые три коэффициента - это координаты вектора, который называется направляющим для плоскости. Он совпадает с нормалью для нее, то есть является перпендикулярным. Этот вектор обозначают n¯(A; B; C). Свободный коэффициент D однозначно определяется из знания координат любой точки, принадлежащей плоскости.

Понятие о проекции точки и ее вычисление

Предположим, что задана некоторая точка P(x 1 ; y 1 ; z 1) и плоскость. Она определена уравнением в общем виде. Если провести перпендикулярную прямую из P к заданной плоскости, то очевидно, что она пересечет последнюю в одной определенной точке Q (x 2 ; y 2 ; z 2). Q называется проекцией P на рассматриваемую плоскость. Длина отрезка PQ называется расстоянием от точки P до плоскости. Таким образом, сам PQ является перпендикулярным плоскости.

Как можно найти координаты проекции точки на плоскость? Сделать это не сложно. Для начала следует составить уравнение прямой, которая будет перпендикулярна плоскости. Ей будет принадлежать точка P. Поскольку вектор нормали n¯(A; B; C) этой прямой должен быть параллелен, то уравнение для нее в соответствующей форме запишется так:

(x; y; z) = (x 1 ; y 1 ; z 1) + λ*(A; B; C).

Где λ - действительное число, которое принято называть параметром уравнения. Изменяя его, можно получить любую точку прямой.

После того как записано векторное уравнение для перпендикулярной плоскости линии, необходимо найти общую точку пересечения для рассматриваемых геометрических объектов. Ее координаты и будут проекцией P. Поскольку они должны удовлетворять обоим равенствам (для прямой и для плоскости), то задача сводится к решению соответствующей системы линейных уравнений.

Понятие проекции часто используется при изучении чертежей. На них изображаются боковые и горизонтальные проекции детали на плоскости zy, zx, и xy.

Вычисление расстояния от плоскости до точки

Как выше было отмечено, знание координат проекции на плоскость точки позволяет определить дистанцию между ними. Используя обозначения, введенные в предыдущем пункте, получаем, что искомое расстояние равно длине отрезка PQ. Для его вычисления достаточно найти координаты вектора PQ¯, а затем рассчитать его модуль по известной формуле. Конечное выражение для d расстояния между P точкой и плоскостью принимает вид:

d = |PQ¯| = √((x 2 - x 1) 2 + (y 2 - y 1) 2 + (z 2 - z 1) 2).

Полученное значение d представлено в единицах, в которых задается текущая декартова координатная система xyz.

Пример задачи

Допустим, имеется точка N(0; -2; 3) и плоскость, которая описывается следующим уравнением:

Следует найти точки проекцию на плоскость и вычислить между ними расстояние.

В первую очередь составим уравнение прямой, которая пересекает плоскость под углом 90 o . Имеем:

(x; y; z) = (0; -2; 3) + λ*(2; -1; 1).

Записывая это равенство в явном виде, приходим к следующей системе уравнений:

Подставляя значения координат из первых трех равенств в четвертое, получим значение λ, определяющее координаты общей точки прямой и плоскости:

2*(2*λ) - (-2 - λ) + λ + 3 + 4 = 0 =>

6*λ + 9 = 0 =>

λ = 9/6 = 3/2 = 1,5.

Подставим найденный параметр в и найдем координаты проекции исходной точки на плоскость:

(x; y; z) = (0; -2; 3) + 1,5*(2; -1; 1) = (3; -3,5; 4,5).

Для вычисления дистанции между заданными в условии задачи геометрическими объектами применим формулу для d:

d = √((3 - 0) 2 + (-3,5 + 2) 2 + (4,5 - 3) 2) = 3,674.

В данной задаче мы показали, как находить проекцию точки на произвольную плоскость и как вычислять между ними расстояние.

Будет построена, когда будет восстановлен перпендикуляр к данной плоскости, проходящий через точку и построена точка пересечения перпендикуляра с плоскостью:
Прямая и плоскость ;
Пересечение прямой с плоскостью

Будет построена, когда будет восстановлен перпендикуляр к данной плоскости, опущенный из точки на плоскость и построена точка пересечения перпендикуляра с плоскостью. Эти построения выполняются когда определяется расстояние от точки до плоскости способом прямоугольного треугольника.

Даны проекции: точки A (A`, A" ) и плоскости α (α H , α V ). Найти расстояние от точки A до плоскости α способом прямоугольного треугольника.

HTML код таблицы, примеры

Строится в графической работе №2 задача №4 для двух точек отрезка EF : Графическая работа 2

Построить эпюр точки B симметричной A относительно прямой m

Здесь показан один из многих путей решения данной задачи.
1. Используем косоугольное проецирование с направлением S параллельным заданной прямой m:
a) Через точку A проводим прямую n и находим следы nH, mH и nV, mV;
b) находим следы плоскости α по следам параллельных прямых ее образующих nH, mH и nV, mV;
c) находим следы kH и kV прямой k симметричной относительно прямой m на одноименных следах плоскости α.
2. Через точку A проводим плоскость β перпендикулярную параллельным прямым m, n и k плоскости α:
a) Через точку A проводим горизонталь и фронталь плоскости β;
b) Находим следы горизонтали и фронтали плоскости β;
c) Проводим следы плоскости β через следы ее горизонтали h и фронтали f.
3. Находим точку B встречи прямой k с плоскостью β:
a) Находим линию пересечения 1 - 2 плоскостей α и β;
b) Находим искомую точку B в пересечении линии 1-2 с прямой k.

Найти острый угол между диагоналями параллелограмма, построенного на векторах

5) Определить координаты вектора с, направленного по биссектрисе угла между векторами a и b, если вектор с= 3корней из 42. a={2;-3;6}, b={-1;2;-2}

Найдем единичный вектор e_a сонаправленный с a:

аналогично e_b = b/|b|,

тогда искомый вектор будет направлен также как векторная сумма e_a+e_b, т.к. (e_a+e_b) это диагональ ромба, которая явл. биссектрисой его угла.

Обозначим (e_a+e_b)=d,

Найдем единичный вектор, который направлен по биссектрисе: e_c = d/|d|

Если |c| = 3*sqrt(42), тогда c = |c|*e_c. Вот и все.

Найти линейную зависимость между данными четырьмя некомпланарными векторами: p=a+b; q=b-c; r=a-b+c; s=b+(1/2)*c

Из первых трех равенств попробуйте выразить `a,b,c` через `p,q,r` (начните со сложения второго и третьего уравнений). Затем замените в последнем уравнении `b` и `c` найденными выражениями через `p,q,r`.

13) Найти уравнение плоскости, проходящей через точки А(2, -1, 4) и В(3, 2, -1) перпендикулярно плоскости х + у + 2z – 3 = 0. Искомое уравнение плоскости имеет вид: Ax + By + Cz + D = 0, вектор нормали к этой плоскости (A, B, C). Вектор (1, 3, -5) принадлежит плоскости. Заданная нам плоскость, перпендикулярная искомой имеет вектор нормали (1, 1, 2). Т.к. точки А и В принадлежат обеим плоскостям, а плоскости взаимно перпендикулярны, то Таким образом, вектор нормали (11, -7, -2). Т.к. точка А принадлежит искомой плоскости, то ее координаты должны удовлетворять уравнению этой плоскости, т.е. 11×2 + 7×1 - 2×4 + D = 0; D = -21. Итого, получаем уравнение плоскости: 11x - 7y – 2z – 21 = 0.

14) Уравнение плоскости проходящее через прямую паралелльно вектору.

Пусть, искомая плоскость проходит через прямую (x-x1)/a1 = (y-y1)/b1 = (z-z1)/c1 параллельно прямой (x-x2)/a2 = (y-y2)/b2 = (z-z2)/c2 .

Тогда нормальный вектор плоскости есть векторное произведение направляющих векторов этих прямых:

Пусть, координаты векторного произведения (A;B;C). Искомая плоскость проходит через точку (x1;y1;z1). Нормальный вектор и точка, через которую проходит плоскость - однозначно определяют уравнение искомой плоскости:



A·(x-x1) + B·(y-y1) + C·(z-z1) = 0

17) Найти уравнение прямой, проходящей через точку A(5, -1) перпендикулярно к прямой 3x - 7y + 14 = 0.

18) Составить уравнение прямой, проходящей через точку М перпендикулярно к данной плоскости М(4,3,1) x+3y+5z-42=0

(x - x0) / n = (y - y0) / m = (z - z0) / p

M(x0,y0,z0) - твоя точка М(4,3,1)

{n, m, p} - направляющий вектор прямой, он же вектро нормали для заданной поверхности {1, 3, 5} (коэффициенты при переменных x,y,z в уравнении плоскости)

Найти проекцию точки на плоскость

Точка М(1,-3,2), плоскость 2x+5y-3z-19=0



Поделиться