Одз корня примеры. Область допустимых значений (ОДЗ): теория, примеры, решения

Как ?
Примеры решений

Если где-то нет чего-то, значит, где-то что-то есть

Продолжаем изучение раздела «Функции и графики», и следующая станция нашего путешествия – . Активное обсуждение данного понятия началось в статье о множествах и продолжилось на первом уроке о графиках функций , где я рассмотрел элементарные функции, и, в частности, их области определения. Поэтому чайникам рекомендую начать с азов темы, поскольку я не буду вновь останавливаться на некоторых базовых моментах.

Предполагается, читатель знает область определения следующих функций: линейной, квадратичной, кубической функции, многочленов, экспоненты, синуса, косинуса. Они определены на (множестве всех действительных чисел) . За тангенсы, арксинусы, так и быть, прощаю =) – более редкие графики запоминаются далеко не сразу.

Область определения – вроде бы вещь простая, и возникает закономерный вопрос, о чём же будет статья? На данном уроке я рассмотрю распространённые задачи на нахождение области определения функции. Кроме того, мы повторим неравенства с одной переменной , навыки решения которых потребуются и в других задачах высшей математики. Материал, к слову, весь школьный, поэтому будет полезен не только студентам, но и учащимся. Информация, конечно, не претендует на энциклопедичность, но зато здесь не надуманные «мёртвые» примеры, а жареные каштаны, которые взяты из настоящих практических работ.

Начнём с экспресс-вруба в тему. Коротко о главном: речь идёт о функции одной переменной . Её область определения – это множество значений «икс» , для которых существуют значения «игреков». Рассмотрим условный пример:

Область определения данной функции представляет собой объединение промежутков:
(для тех, кто позабыл: – значок объединения). Иными словами, если взять любое значение «икс» из интервала , или из , или из , то для каждого такого «икс» будет существовать значение «игрек».

Грубо говоря, где область определения – там есть график функции. А вот полуинтервал и точка «цэ» не входят в область определения и графика там нет.

Как найти область определения функции? Многие помнят детскую считалку: «камень, ножницы, бумага», и в данном случае её можно смело перефразировать: «корень, дробь и логарифм». Таким образом, если вам на жизненном пути встречается дробь, корень или логарифм, то следует сразу же очень и очень насторожиться! Намного реже встречаются тангенс, котангенс, арксинус, арккосинус, и о них мы тоже поговорим. Но сначала зарисовки из жизни муравьёв:

Область определения функции, в которой есть дробь

Предположим, дана функция, содержащая некоторую дробь . Как вы знаете, на ноль делить нельзя: , поэтому те значения «икс», которые обращают знаменатель в ноль – не входят в область определения данной функции .

Не буду останавливаться на самых простых функциях вроде и т.п., поскольку все прекрасно видят точки, которые не входят в их области определения. Рассмотрим более содержательные дроби:

Пример 1

Найти область определения функции

Решение : в числителе ничего особенного нет, а вот знаменатель должен быть ненулевым. Давайте приравняем его к нулю и попытаемся найти «плохие» точки:

Полученное уравнение имеет два корня: . Данные значения не входят в область определения функции . Действительно, подставьте или в функцию и вы увидите, что знаменатель обращается в ноль.

Ответ : область определения:

Запись читается так: «область определения – все действительные числа за исключением множества, состоящего из значений ». Напоминаю, что значок обратного слеша в математике обозначает логическое вычитание , а фигурные скобки – множество . Ответ можно равносильно записать в виде объединения трёх интервалов:

Кому как нравится.

В точках функция терпит бесконечные разрывы , а прямые, заданные уравнениями являются вертикальными асимптотами для графика данной функции. Впрочем, это уже немного другая тема, и далее я на этом не буду особо заострять внимание.

Пример 2

Найти область определения функции

Задание, по существу, устное и многие из вас практически сразу найдут область определения. Ответ в конце урока.

Всегда ли дробь будет «нехорошей»? Нет. Например, функция определена на всей числовой оси. Какое бы значение «икс» мы не взяли, знаменатель не обратится в ноль, более того, будет всегда положителен: . Таким образом, область определения данной функции: .

Все функции наподобие определены и непрерывны на .

Чуть более сложнА ситуация, когда знаменатель оккупировал квадратный трёхчлен:

Пример 3

Найти область определения функции

Решение : попытаемся найти точки, в которых знаменатель обращается в ноль. Для этого решим квадратное уравнение :

Дискриминант получился отрицательным, а значит, действительных корней нет, и наша функция определена на всей числовой оси.

Ответ : область определения:

Пример 4

Найти область определения функции

Это пример для самостоятельного решения. Решение и ответ в конце урока. Советую не лениться с простыми задачками, поскольку к дальнейшим примерам накопится недопонимание.

Область определения функции с корнем

Функция с квадратным корнем определена только при тех значениях «икс», когда подкоренное выражение неотрицательно : . Если корень расположился в знаменателе , то условие очевидным образом ужесточается: . Аналогичные выкладки справедливы для любого корня положительной чётной степени: , правда, корень уже 4-й степени в исследованиях функций не припоминаю.

Пример 5

Найти область определения функции

Решение : подкоренное выражение должно быть неотрицательным:

Прежде чем продолжить решение, напомню основные правила работы с неравенствами, известные ещё со школы.

Обращаю особое внимание! Сейчас рассматриваются неравенства с одной переменной – то есть для нас существует только одна размерность по оси . Пожалуйста, не путайте с неравенствами двух переменных , где геометрически задействована вся координатная плоскость. Однако есть и приятные совпадения! Итак, для неравенства равносильны следующие преобразования:

1) Слагаемые можно переносить из части в часть, меняя у них (слагаемых) знаки.

2) Обе части неравенства можно умножить на положительное число.

3) Если обе части неравенства умножить на отрицательное число, то необходимо сменить знак самого неравенства . Например, если было «больше», то станет «меньше»; если было «меньше либо равно», то станет «больше либо равно».

В неравенстве перенесём «тройку» в правую часть со сменой знака (правило №1):

Умножим обе части неравенства на –1 (правило №3):

Умножим обе части неравенства на (правило №2):

Ответ : область определения:

Ответ также можно записать эквивалентной фразой: «функция определена при ».
Геометрически область определения изображается штриховкой соответствующих интервалов на оси абсцисс. В данном случае:

Ещё раз напоминаю геометрический смысл области определения – график функции существует только на заштрихованном участке и отсутствует при .

В большинстве случаев годится чисто аналитическое нахождение области определения, но когда функция сильно заморочена, следует чертить ось и делать пометки.

Пример 6

Найти область определения функции

Это пример для самостоятельного решения.

Когда под квадратным корнем находится квадратный двучлен или трёхчлен, ситуация немного усложняется, и сейчас мы подробно разберём технику решения:

Пример 7

Найти область определения функции

Решение : подкоренное выражение должно быть строго положительным, то есть нам необходимо решить неравенство . На первом шаге пытаемся разложить квадратный трёхчлен на множители:

Дискриминант положителен, ищем корни:

Таким образом, парабола пересекает ось абсцисс в двух точках, а это значит, что часть параболы расположена ниже оси (неравенство ), а часть параболы – выше оси (нужное нам неравенство ).

Поскольку коэффициент , то ветви параболы смотрят вверх. Из вышесказанного следует, что на интервалах выполнено неравенство (ветки параболы уходят вверх на бесконечность), а вершина параболы расположена на промежутке ниже оси абсцисс, что соответствует неравенству :

! Примечание: если вам не до конца понятны объяснения, пожалуйста, начертите вторую ось и параболу целиком! Целесообразно вернуться к статье и методичке Горячие формулы школьного курса математики .

Обратите внимание, что сами точки выколоты (не входят в решение), поскольку неравенство у нас строгое.

Ответ : область определения:

Вообще, многие неравенства (в том числе рассмотренное) решаются универсальным методом интервалов , известным опять же из школьной программы. Но в случаях квадратных дву- и трёхчленов, на мой взгляд, гораздо удобнее и быстрее проанализировать расположение параболы относительно оси . А основной способ – метод интервалов мы детально разберём в статье Нули функции. Интервалы знакопостоянства .

Пример 8

Найти область определения функции

Это пример для самостоятельного решения. В образце подробно закомментирована логика рассуждений + второй способ решения и ещё одно важное преобразование неравенства, без знания которого студент будет хромать на одну ногу…, …хмм… на счёт ноги, пожалуй, погорячился, скорее – на один палец. Большой палец.

Может ли функция с квадратным корнем быть определена на всей числовой прямой? Конечно. Знакомые всё лица: . Или аналогичная сумма с экспонентой: . Действительно, для любых значения «икс» и «ка»: , поэтому подАвно и .

А вот менее очевидный пример: . Здесь дискриминант отрицателен (парабола не пересекает ось абсцисс), при этом ветви параболы направлены вверх, следовательно, и область определения: .

Вопрос противоположный: может ли область определения функции быть пустой ? Да, и сразу напрашивается примитивный пример , где подкоренное выражение отрицательно при любом значении «икс», и область определения: (значок пустого множества). Такая функция не определена вообще (разумеется, график тоже иллюзорен).

С нечётными корнями и т.д. всё обстоит гораздо лучше – тут подкоренное выражение может быть и отрицательным . Например, функция определена на всей числовой прямой. Однако у функции единственная точка всё же не входит в область определения, поскольку обращают знаменатель в ноль. По той же причине для функции исключаются точки .

Область определения функции с логарифмом

Третья распространённая функция – логарифм. В качестве образца я буду рисовать натуральный логарифм, который попадается примерно в 99 примерах из 100. Если некоторая функция содержит логарифм , то в её область определения должны входить только те значения «икс», которые удовлетворяют неравенству . Если логарифм находится в знаменателе: , то дополнительно накладывается условие (так как ).

Пример 9

Найти область определения функции

Решение : в соответствии с вышесказанным составим и решим систему:

Графическое решение для чайников:

Ответ : область определения:

Остановлюсь ещё на одном техническом моменте – у меня ведь не указан масштаб и не проставлены деления по оси. Возникает вопрос: как выполнять подобные чертежи в тетради на клетчатой бумаге? Отмерять ли расстояние между точками по клеточкам строго по масштабу? Каноничнее и строже, конечно, масштабировать, но вполне допустим и схематический чертёж, принципиально отражающий ситуацию.

Пример 10

Найти область определения функции

Для решения задачи можно использовать метод предыдущего параграфа – проанализировать, как парабола расположена относительно оси абсцисс. Ответ в конце урока.

Как видите, в царстве логарифмов всё очень похоже на ситуацию с квадратным корнем: функция (квадратный трёхчлен из Примера №7) определена на интервалах , а функция (квадратный двучлен из Примера №6) на интервале . Неловко уже и говорить, функции типа определены на всей числовой прямой.

Полезная информация : интересна типовая функция , она определена на всей числовой прямой кроме точки . Согласно свойству логарифма , «двойку» можно вынести множителем за пределы логарифма, но, чтобы функция не изменилась, «икс» необходимо заключить под знак модуля: . Вот вам и ещё одно «практическое применение» модуля =). Так необходимо поступать в большинстве случаев, когда вы снОсите чётную степень, например: . Если же основание степени заведомо положительно, например, , то в знаке модуля отпадает необходимость и достаточно обойтись круглыми скобками: .

Чтобы не повторяться, давайте усложним задание:

Пример 11

Найти область определения функции

Решение : в данной функции у нас присутствует и корень и логарифм.

Подкоренное выражение должно быть неотрицательным: , а выражение под знаком логарифма – строго положительным: . Таким образом, необходимо решить систему:

Многие из вас прекрасно знают или интуитивно догадываются, что решение системы должно удовлетворять каждому условию.

Исследуя расположение параболы относительно оси , приходим к выводу, что неравенству удовлетворяет интервал (синяя штриховка):

Неравенству , очевидно, соответствует «красный» полуинтервал .

Поскольку оба условия должны выполняться одновременно , то решением системы является пересечение данных интервалов. «Общие интересы» соблюдены на полуинтервале .

Ответ : область определения:

Типовое неравенство , как демонстрировалось в Примере №8, нетрудно разрешить и аналитически.

Найденная область определения не изменится для «похожих функций», например, для или . Также можно добавить какие-нибудь непрерывные на функции, например: , или так: , или даже так: . Как говорится, корень и логарифм – вещь упрямая. Единственное, если одну из функций «сбросить» в знаменатель, то область определения изменится (хотя в общем случае это не всегда справедливо). Ну а в теории матана по поводу этого словесного… ой… существуют теоремы.

Пример 12

Найти область определения функции

Это пример для самостоятельного решения. Использование чертежа вполне уместно, так как функция не самая простая.

Ещё пару примеров для закрепления материала:

Пример 13

Найти область определения функции

Решение : составим и решим систему:

Все действия уже разобраны по ходу статьи. Изобразим на числовой прямой интервал, соответствующий неравенству и, согласно второму условию, исключим две точки:

Значение оказалось вообще не при делах.

Ответ : область определения

Небольшой математический каламбур на вариацию 13-го примера:

Пример 14

Найти область определения функции

Это пример для самостоятельного решения. Кто пропустил, тот в пролёте;-)

Завершающий раздел урока посвящен более редким, но тоже «рабочим» функциям:

Области определения функций
с тангенсами, котангенсами, арксинусами, арккосинусами

Если в некоторую функцию входит , то из её области определения исключаются точки , где Z – множество целых чисел . В частности, как отмечалось в статье Графики и свойства элементарных функций , у функции выколоты следующие значения:

То есть, область определения тангенса: .

Убиваться сильно не будем:

Пример 15

Найти область определения функции

Решение : в данном случае и в область определения не войдут следующие точки:

Скинем «двойку» левой части в знаменатель правой части:

В результате :

Ответ : область определения: .

В принципе, ответ можно записать и в виде объединения бесконечного количества интервалов, но конструкция получится весьма громоздкой:

Аналитическое решение полностью согласуется с геометрическим преобразованием графика : если аргумент функции умножить на 2, то её график сожмётся к оси в два раза. Заметьте, как у функции уполовинился период, и точки разрыва участились в два раза. Тахикардия.

Похожая история с котангенсом. Если в некоторую функцию входит , то из её области определения исключаются точки . В частности, для функции автоматной очередью расстреливаем следующие значения:

Иными словами:

Поздравляю вас, дорогие читатели!

Наконец-то мы дошли до решения тригонометрических уравнений. Сейчас мы решим несколько уравнений, которые похожи на задания ЕГЭ. Конечно, в реальном экзамене, задачи будут немного сложнее, но суть останется та же.

Для начала рассмотрим легкое уравнение (подобные мы уже решали в прошлых уроках, но повторить всегда полезно).

$$(2\cos x + 1) (2\sin x - \sqrt{3}) = 0.$$

Думаю, объяснения, как решать, излишни.

$$2\cos x + 1 = 0 \text{ или } 2\sin x - \sqrt{3} =0,$$

$$\cos x = -\frac{1}{2} \text{ или } \sin x = \frac{\sqrt{3}}{2},$$

Горизонтальным пунктиром отмечено решение для уравнения с синусом , вертикальным - с косинусом.

Таким образом, итоговое решение можно записать, например, так:

$$\left[ \begin{array}{l}x= \pm \frac{2\pi}{3},\\x = \frac{\pi}{3}+2\pi k. \end{array}\right.$$

Тригонометрическое уравнение с ОДЗ

$$(1+\cos x)\left(\frac{1}{\sin x} - 1\right) = 0.$$

Важное отличие в этом примере, что в знаменателе появился синус. Хотя мы немного решали подобные уравнения в предыдущих уроках, стоит остановиться на ОДЗ поподробнее.

ОДЗ

`\sin x \neq 0 \Rightarrow x \neq \pi k`. Когда мы будем отмечать решение на круге, эту серию корней мы отметим специально проколотыми (открытыми) точками, чтобы показать, что `x` не может принимать такие значения.

Решение

Приведем к общему знаменателю, а затем поочередно приравняем обе скобки к нулю.

$$(1+\cos x)\left(\frac{1-\sin x}{\sin x}\right) = 0,$$

$$1+\cos x = 0 \text{ или } \frac{1-\sin x}{\sin x} = 0,$$

$$\cos x = -1 \text{ или } \sin x=1.$$

Надеюсь, решение этих уравнений не вызовет затруднений.

Серии корней - решений уравнения - показаны ниже красными точками. ОДЗ отмечена на рисунке синим.

Таким образом, понимаем, что решение уравнения `\cos x = -1` не удовлетворяет ОДЗ.
В ответ пойдет только серия корней `x = \frac{\pi}{2} + 2\pi k`.

Решение квадратного тригонометрического уравнения

Следующий пункт нашей программы - решение квадратного уравнения . Ничего сложного собой не представляет. Главное - увидеть квадратное уравнение и выполнить замену как будет показано ниже.

$$3\sin^2 x + \sin x =2,$$

$$3\sin^2 x + \sin x -2=0.$$

Пусть `t= \sin x`, тогда получим:

$$3t^2 + t-2=0.$$

$$t_1 = \frac{2}{3}, t_2 = -1.$$

Выполним обратную замену.

$$\sin x = \frac{2}{3} \text{ или } \sin x = -1.$$

$$\left[\begin{array}{l}x = \arcsin \frac{2}{3} + 2\pi k, \\ x = \pi - \arcsin \frac{2}{3} + 2\pi k, \\ x = -\frac{\pi}{2} + 2\pi k. \end{array} \right.$$

Решение квадратного уравнения с тангенсом

Решим следующее уравнение:

$$\newcommand{\tg}{\mathop{\mathrm{tg}}}{\tg}^2 2x - 6\tg 2x +5 =0, $$

Обратим внимание, что аргумент у тангенса равен `2x` и чтобы получить окончательный ответ, нужно будет поделить на `2`. Пусть `t=\tg 2x`, тогда

$$t^2 - 6t +5 =0, $$

$$t_1 = 5, t_2 = 1.$$

Обратная замена.

$$\tg x = 5, \tg x = 1.$$

$$\left[\begin{array}{l}2x = \arctan{5}+\pi k, \\ 2x = \frac{\pi}{4} + \pi k. \end{array} \right.$$

Теперь поделим обе серии на два, чтобы узнать, чему равен, собственно, `x`.

$$\left[\begin{array}{l}x = \frac{1}{2}\arctan{5}+\frac{\pi k}{2}, \\ 2x = \frac{\pi}{8} + \frac{\pi k}{2}. \end{array} \right.$$

Вот мы и получили ответ.

Последнее уравнение (произведение тангенса на синус)

$$\tg x \cdot \sin 2x = 0.$$

ОДЗ

Поскольку тангенс - это дробь, знаменателем которой является косинус, то в ОДЗ получим, что `\cos x \neq 0 \Rightarrow x \neq \frac{\pi}{2}+\pi k.`

Решение

$$\tg x =0 \text{ или } \sin 2x = 0.$$

Эти уравнения решаются легко. Получим:

$$x = \pi k \text{ или } 2x = \pi k,$$

$$x = \pi k \text{ или } x = \frac{\pi k}{2}.$$

Теперь самое интересное: поскольку у нас было ОДЗ, нужно выполнить отбор корней. Отметим полученные серии корней на круге. (Как это сделать, детально показано в приложенном видео.)

Синим отмечено ОДЗ, красным - решения. Видно, что ответ будет `x = \pi k`.

На этом пятый урок закончен. Обязательно практикуйтесь в решении уравнений. Одно дело в знать ход решения в общих чертах, другое дело - сориентироваться, при решении конкретной задачи. Постепенно отрабатывайте каждый элемент решения задачи. Сейчас главное - научиться грамотно работать с тригонометрическим кругом, находить с его помощью решения, видеть ОДЗ и правильно делать замены для квадратных уравнений.

Задачи для тренировки

Решите уравнения:

  • `2 \cos^2 \frac{x}{2} + \sqrt{3} \cos \frac{x}{2} = 0`,
  • `3 {\tg}^2 2x + 2\tg 2x -1= 0`,
  • `2\cos^2 3x - 5\cos 3x -3 =0`,
  • `\sin^2 4x + \sin x - \cos^2x =0` (применить основное тригонометрическое тождество),
  • `4\sin^2 \left(x-\frac{\pi}{3} \right) - 3 =0`.

На этом хватит. Будут вопросы - спрашивайте! Оставляйте лайки, если мой труд оказался полезен:)

Дробные уравнения. ОДЗ.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Продолжаем осваивать уравнения. Мы уже в курсе, как работать с линейными уравнениями и квадратными. Остался последний вид – дробные уравнения . Или их ещё называют гораздо солиднее – дробные рациональные уравнения . Это одно и то же.

Дробные уравнения.

Как ясно из названия, в этих уравнениях обязательно присутствуют дроби. Но не просто дроби, а дроби, у которых есть неизвестное в знаменателе . Хотя бы в одном. Например:

Напомню, если в знаменателях только числа , это линейные уравнения.

Как решать дробные уравнения ? Прежде всего – избавиться от дробей! После этого уравнение, чаще всего, превращается в линейное или квадратное. А дальше мы знаем, что делать… В некоторых случаях оно может превратиться в тождество, типа 5=5 или неверное выражение, типа 7=2. Но это редко случается. Ниже я про это упомяну.

Но как избавиться от дробей!? Очень просто. Применяя всё те же тождественные преобразования.

Нам надо умножить всё уравнение на одно и то же выражение. Так, чтобы все знаменатели посокращались! Всё сразу станет проще. Поясняю на примере. Пусть нам требуется решить уравнение:

Как учили в младших классах? Переносим все в одну сторону, приводим к общему знаменателю и т.д. Забудьте, как страшный сон! Так нужно делать, когда вы складываете или вычитаете дробные выражения. Или работаете с неравенствами. А в уравнениях мы сразу умножаем обе части на выражение, которое даст нам возможность сократить все знаменатели (т.е., в сущности, на общий знаменатель). И какое же это выражение?

В левой части для сокращения знаменателя требуется умножение на х+2 . А в правой требуется умножение на 2. Значит, уравнение надо умножать на 2(х+2) . Умножаем:

Это обычное умножение дробей, но распишу подробно:

Обратите внимание, я пока не раскрываю скобку (х + 2) ! Так, целиком, её и пишу:

В левой части сокращается целиком (х+2) , а в правой 2. Что и требовалось! После сокращения получаем линейное уравнение:

А это уравнение уже решит всякий! х = 2 .

Решим ещё один пример, чуть посложнее:

Если вспомнить, что 3 = 3/1, а 2х = 2х/ 1, можно записать:

И опять избавляемся от того, что нам не очень нравится – от дробей.

Видим, что для сокращения знаменателя с иксом, надо умножить дробь на (х – 2) . А единицы нам не помеха. Ну и умножаем. Всю левую часть и всю правую часть:

Опять скобки (х – 2) я не раскрываю. Работаю со скобкой в целом, как будто это одно число! Так надо делать всегда, иначе ничего не сократится.

С чувством глубокого удовлетворения сокращаем (х – 2) и получаем уравнение безо всяких дробей, в линеечку!

А вот теперь уже раскрываем скобки:

Приводим подобные, переносим всё в левую часть и получаем:

Но до того мы другие задачи научимся решать. На проценты. Те ещё грабли, между прочим!

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Решая различные задачи, нам очень часто приходится проводить тождественные преобразования выражений . Но бывает, что какое-то преобразование в одних случаях допустимо, а в других – нет. Существенную помощь в плане контроля допустимости проводимых преобразований оказывает ОДЗ. Остановимся на этом подробнее.

Суть подхода состоит в следующем: сравниваются ОДЗ переменных для исходного выражения с ОДЗ переменных для выражения, полученного в результате выполнения тождественных преобразований, и на основании результатов сравнения делаются соответствующие выводы.

Вообще, тождественные преобразования могут

  • не влиять на ОДЗ;
  • приводить к расширению ОДЗ;
  • приводить к сужению ОДЗ.

Давайте поясним каждый случай примером.

Рассмотрим выражение x 2 +x+3·x , ОДЗ переменной x для этого выражения есть множество R . Теперь проделаем с этим выражением следующее тождественное преобразование – приведем подобные слагаемые , в результате оно примет вид x 2 +4·x . Очевидно, ОДЗ переменной x этого выражения тоже является множество R . Таким образом, проведенное преобразование не изменило ОДЗ.

Переходим дальше. Возьмем выражение x+3/x−3/x . В этом случае ОДЗ определяется условием x≠0 , которое отвечает множеству (−∞, 0)∪(0, +∞) . Это выражение тоже содержит подобные слагаемые, после приведения которых приходим к выражению x , для которого ОДЗ есть R . Что мы видим: в результате проведенного преобразования произошло расширение ОДЗ (к ОДЗ переменной x для исходного выражения добавилось число нуль).

Осталось рассмотреть пример сужения области допустимых значений после проведения преобразований. Возьмем выражение . ОДЗ переменной x определяется неравенством (x−1)·(x−3)≥0 , для его решения подходит, например, в результате имеем (−∞, 1]∪∪; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.

  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.
  • Мордкович А. Г. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. - 2-е изд., стер. - М.: Мнемозина, 2008. - 287 с.: ил. ISBN 978-5-346-01027-2.
  • Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - М. : Просвещение, 2010.- 368 с. : ил.- ISBN 978-5-09-022771-1.
  • 1

    Шакирова Г. Г. (, МАОУ»Лицей № 9»)

    1. http://www.school.ioffe.ru/library/online/geometry/ryzhik/35000/35000_part3.pdf.:

    2. Газета «Математика» № 46,15. 1998.

    3. Газета «Математика» № 15. 2002.

    4. Газета «Математика» № 17. 2002.

    5. Ф. П. Яремчук, П. А. Рудченко Справочник «Алгебра и элементарные функции» Киев: «Наукова думка»; 1976.;

    7. Сборник по подготовке к ОГЭ. Типовые тестовые задания, 9 класс, издательство «ЭКЗАМЕН», Москва 2016.

    8. Учебник по алгебре за 9 класс, А. Г. Мордкович, Н. П. Николаев, издательство «МНЭМОЗИНА», Москва 2010.

    Данная статья является реферативным изложением основной работы. Полный текст научной работы, приложения, иллюстрации и иные дополнительные материалы доступны на сайте III Международного конкурса научно-исследовательских и творческих работ учащихся «Старт в науке» по ссылке: https://www.school-science.ru/0317/7/29329

    Я считаю, что математика - это одна из важнейших наук в мире. Она приобретает особое значение для человека, в связи с ростом науки и технического прогресса. Всем людям в своей жизни приходилось выполнять достаточно сложные расчеты, пользоваться вычислительной техникой, находить и применять нужные формулы, владеть приемами геометрических измерений, но человек не всегда учитывает все условия, влияющие на результат. Именно благодаря этому и появляется условие ОДЗ.

    Данная тема меня заинтересовала, тем, что я не до конца понял значение и важность нахождения ОДЗ, благодаря чему я не уделял должного внимания важности ОДЗ в некоторых заданиях, и у меня с ОДЗ возникла «война».

    В то же время по математической сути нахождение ОДЗ вовсе не является обязательным, часто не нужным, а иногда и вообще невозможным - и все это без какого бы то ни было ущерба для решения. И из-за такой ситуации с ОДЗ и возникает «война».

    При решении задач некоторых типов уравнений и неравенств, я столкнулся с тем, что некоторые условия либо не подходят, либо на них накладываются определенные значения и в дальнейшем я понял, что действительно существует определенная область, в которой расширяются допустимые значения, удовлетворяющие условию задач и уравнений некоторых типов.

    Если привести грубое сравнение теннисного мячика и функции (неравенства, уравнения или задачи), то оболочка мячика и внешние условия - это наше ОДЗ, а то, как мячик отскакивает от пола - это решение функции (неравенства, уравнения или задачи). Тогда можно сказать, что если мы нарушим оболочку этого мячика (или, проще говоря, порвем его), то мячик перестанет так же хорошо отскакивать, как и раньше, то есть если мы нарушим ОДЗ, то решения не будет.

    Актуальность моей темы заключается в том, что человек, при решении проблемы, не обращает внимания на мелкие условия. Так же можно привести аналогию с решением определенных заданий по математике, где не учитывается условие ОДЗ, а это влияет на результат решения. Таких заданий много во второй части ОГЭ, что может привести к неуспешной сдачи экзамена.

    Доказать важность ОДЗ.

    1. Объяснить свойства и значения в нашей жизни ОДЗ.

    2. Проанализировать различные методы решения примеров с участием ОДЗ.

    Методы исследования:

    • теоретическое исследование (анализ литературы, поиск источников);
    • анализ основных задач и понятий ОДЗ;
    • метод индукции ОДЗ (умозаключение от фактов к моей гипотезе)
    • реальное исследование (решение заданий группой людей).

    Практическая часть:

    Проведение исследований по решению несложных задач и уравнений, описание исследований.

    Гипотеза:

    ОДЗ - это следствие возникновения различных условий в функциях, задачах, неравенствах и уравнениях.

    История формирования

    Что ж, давайте копнем в историю формирования ОДЗ.

    Как и остальные понятия математики, понятие функции сложилось, конечно же, не сразу, а прошло долгий путь развития. В работе Пьера Ферма «Введение и изучение плоских и телесных мест» (опубликованной в 1679 году) сказано: «Всякий раз, когда в заключительном уравнении имеются две неизвестные величины, налицо имеется место». Как можно догадаться, здесь ведется речь о функциональной зависимости и ее графическом изображении («место» у Ферма означает линию). Изучение линий по их уравнениям в «Геометрии» Р. Декарта (1637) также указывает на ясное представление о взаимной зависимости между двумя переменными величины. Это свидетельствует уже о совершенно отчетливом владении понятием функции. В геометрическом и механическом виде это понятие мы находим и у И. Ньютона. Однако сам термин «функция» впервые появляется лишь в 1692 году у Г. Лейбница и притом не совсем в современном его понимании. Г. Лейбниц называет функцией различные отрезки, связанные с какой-либо кривой (например, абсциссы ее точек). В первом печатном курсе «Анализа бесконечно малых для познания кривых линий» Лопиталя (1696 года) термин «функция» не употребляется. Первое определение функции, близкое к современному, встречается у И. Бернулли (в 1718 году): «Функция - это величина, составленная из переменной и постоянной». В основе этого не вполне отчетливого определения лежит идея задания функции аналитической формулой.

    В итоге я пришел к определению ОДЗ для функции. Областью определения (допустимых значений) функции Y называется совокупность значений независимой переменной X, при которых эта функция определена, т. е. область изменения независимой переменной (аргумента).

    Уравнения и системы уравнений математики умели решать очень давно. В «Арифметике» греческого математика из Александрии Диофанта (III века) еще не было систематического изложения алгебры, однако в ней содержался ряд задач, решаемых с помощью составления уравнений. Есть в ней такая задача: «Найти два числа по их сумме 20 и произведению 96».

    Чтобы обезопасить себя от решения квадратного уравнения общего вида, к которому приводит обозначение одного из чисел буквой, и которое тогда еще не умели решать, Диофант обозначал неизвестные числа 10 + x и 10 - x (в современной записи) и получал неполное квадратное уравнение 100 - х2 = 96, для которого подходил только положительный корень 2.

    Задачи на квадратные уравнения встречаются в трудах индийских математиков уже с V века нашей эры.

    Квадратные уравнения классифицируются в трактате «Краткая книга об исчислении алгебры и алмукабалы» Мухаммеда аль-Хорезми (787-850 года). В нем рассмотрены и решены (в геометрической форме) 6 видов квадратных уравнений, содержащих в обеих частях только члены с положительными коэффициентами. При этом рассматривались лишь положительные корни уравнений.

    В самом известном российском учебнике «Арифметика» Леонтия Филипповича Магницкого (1669-1739 года) имелось немало задач на квадратные уравнения. Вот одна из них:

    «Некий генерал хочет с 5000 человек баталию учинить, и чтобы та была в лице вдвое, нежели в стороне. Колик оная баталия будет иметь в лице и в стороне?», т. е. сколько солдат надо поставить по фронту и сколько им в затылок, чтобы число солдат по фронту было в 2 раза больше числа солдат, расположенных им «в затылок»?

    В древневавилонских текстах (3000-2000 лет до нашей эры) встречаются и задачи, решаемые теперь с помощью систем уравнений, содержащих уравнения второй степени. Вот одна из них:

    «Площади двух своих квадратов я сложил: . Сторона второго квадрата равна стороны первого и еще 5».

    Соответствующая система в современной записи имеет вид:

    И только в XVII веке после работ Декарта, Ньютона и других математиков решение квадратных уравнений приняло современный вид.

    Вас, как мне кажется, интересует ответ на вопрос: «Для чего я написал историю возникновения функции и неравенств?» Ответ очень прост. ОДЗ - это лишь следствие возникновения различных условий в функциях, задачах, неравенствах и уравнениях.

    ОДЗ в неравенствах и уравнениях

    При решении дробно-рациональных уравнений и неравенств:

    Знания с 1 по 9 класс не позволяют мне производить деление на 0. «На 0 делить нельзя, так как на пустоту что-либо поделить невозможно», - говорили мне учителя в начальной школе.

    Решение иррациональных уравнений и неравенств:

    Уравнения

    Неравенства

    Исследование

    Я провел исследовательскую работу для выяснения, как часто ученики учитывают ОДЗ при решении задач, уравнений, неравенств и т. д. Для этого я подобрал 4 задания и решил их сам, затем предложил их 35 девятиклассникам, в первых трех из которых не обязательно было учитывать ОДЗ, а в четвертом - обязательно. Целью исследовательской работы являлось доказательство того, что люди не уделяют должного внимания ОДЗ.

    Задания, предложенные девятиклассникам:

    1) Из пункта А в пункт Б выехал автобус со скоростью 60 км/ч. Через час вслед за ним в пункт Б выехал автомобиль, и через 4 часа догнал автобус в пункте Б (Приехали одновременно). Какая скорость у автомобиля?

    2) (х+3)2+10=(х-2)2

    3) 1/(х-2) = х-4

    При проверке данных заданий я обнаружил, что решения можно разделить по некоторым критериям.

    Критерии отбора решений и количество входящих в них человек:

    Справились со всеми заданиями - 5 человек; написали ОДЗ в 4 задании, но допустили ошибку в 1 задании - 2 человека, в 2 примерах - 8 человек, в 3 примерах - 3 человека; Не писали ОДЗ в 4 примере - 17 человек. Основные ошибки:

    1. Забывают о своем ОДЗ (написали, но забыли учесть);
    2. Неправильно составили ОДЗ;
    3. Неправильно домножили уравнения;
    4. Не используют подходящие формулы сокращенного умножения;
    5. Путают знаки (*, +, -,:);
    6. Делают не все примеры.
    7. Забывают о смене знаков, при переносе через равно;

    И я пришел к тому, что около половины учеников 9-х классов, к сожалению, не учитывали, либо неправильно записали ОДЗ в представленных заданиях, вследствие чего допустили ошибки.

    Где встречается ОДЗ в реальной жизни

    Мы, на самом деле, так часто встречаемся с условиями ОДЗ, что их просто не замечаем. Например, при покупке чего-либо; с определением действий, при различной температуре на улице.

    Пример № 1 из исследования (задача) может быть моделью реальной ситуации, но слишком обобщенной (ни один автобус и ни одна машина не может все время ездить с постоянной скоростью из-за различных факторов, таких как качество асфальта на дороге, углы и количество поворотов, количество бензина и др.). Вот более подходящий пример:

    Нам дали 200 рублей на корм коту, который стоит 18 рублей за пакетик, и буханку белого, по стоимости 24 рубля. Нужно рассчитать, сколько рублей мы потратим на корм. Возьмем за X - количество пакетиков с кормом.

    ОДЗ: х ≥ 0,

    x = (200-24)/18,

    x = 9 (остаток 14).

    Значит, мы купим 9 пакетиков корма с остатком равным 14 рублей, что соответствует нашему ОДЗ.

    Необязательность ОДЗ

    Как я убедился на собственном опыте, ОДЗ, зачастую, необязательно указывать в примерах, хотя именно указание ОДЗ требуют задания в ОГЭ и ЕГЭ, иначе получишь меньше баллов. Это можно увидеть на примере 1 и 2 заданий из исследования. И действительно, при решении этих номеров мы замечаем, что область допустимых значений можно не указывать, так как ее отсутствие никак не повлияет на ответ. Но очень часто в таких случаях хорошо сделанную работу оценивали на тройку.

    Поиски ОДЗ являются, зачастую, просто лишней работой, без которой спокойно можно обойтись. Тут можно привести массу других примеров. Они хорошо известны, и поэтому я их опускаю. Главным способом решения являются равносильные преобразования при переходе от одного уравнения к другому, то есть к более простому.

    Примеры-ловушки

    Среди заданий, использующих уравнения или неравенства, есть задачи-ловушки (задания, в которых ОДЗ может сыграть над вами злую шутку). Известно, что в результате некоторых преобразований, изменяющих исходное ОДЗ, мы можем прийти к неверным решениям. Можно привести пример 3 и 4 заданий из исследовательской работы, но вот еще 1 пример таких уравнений:

    Из ОДЗ имеем х ≥ 5 (потому что подкоренное выражения не может быть отрицательным). Так как справа стоит положительное выражение, то а значит, x - 5 > 2x - 1. Решая последнее неравенство, получим x < -4, что не входит в ОДЗ. Поэтому решения нет.

    Заключение

    Подводя некоторый итог всей исследовательской работе, я с уверенностью могу сказать, что некоторые условия ОДЗ для уравнений и неравенств - схожи. ОДЗ, как я доказал, встречается в реальной жизни, притом очень часто; также я показал то, что универсального ответа на вопрос «обязательно ли указывать ОДЗ во всех примерах?» в школьном курсе нет.

    Также я доказал свою гипотезу, которая звучала так: «ОДЗ, в действительности, - это следствие возникновения различных условий в функциях, задачах, неравенствах и уравнениях».

    Каждый раз, если хочешь понять, что делаешь, а не действовать механически, возникает вопрос: а какой способ решения лучше всего выбрать, в частности искать ОДЗ или не надо? Я полагаю, что в ходе своей работы частично ответил на этот вопрос.

    Причина учета ОДЗ кажется очевидной, но люди все равно будут противиться тому, чтобы лишний раз записать ОДЗ. И сколько бы ни было различных презентаций, пояснений в учебниках и объяснений со стороны учителей, война, не смотря ни на что, еще не завершилась и даже не собирается завершаться, что и подтверждает актуальность и важность данной темы.

    Но я бы хотел посоветовать всем, всегда учитывать ОДЗ, так как сразу сказать, что в какой-то определенной задаче нет подвоха, удается далеко не всегда.

    Представленный мной доклад может использоваться не только учениками, но и педагогами для объяснения важности ОДЗ.

    Библиографическая ссылка

    Северов О. С. ВОЙНА С ОДЗ // Международный школьный научный вестник. – 2017. – № 5-1. – С. 84-87;
    URL: http://school-herald.ru/ru/article/view?id=400 (дата обращения: 02.09.2019).

    Поделиться