Что такое состояние воды в природе. Какая бывает вода

Физическое состояние воды бывает разным по своему физическому и химическому составу. Она является наиболее распространенным элементом на земле и базовым для жизнеобеспечения. Также, она самый сильный растворитель в природе, чем и обусловлено ее разнообразие. Определение видов и типов воды зависят от разных факторов и признаков.

КЛАССИФИКАЦИЯ ПО ИЗОТОПАМ ВОДОРОДА В МОЛЕКУЛЕ ВОДЫ

Легкая вода

Это обычная природная жидкость, которая очищенная от тяжелой. Обычная питьевая вода состоит из легкой на 99,7%.

Тяжелая вода

Еще ее называют дейтериевая вода. Химическая формула такой жидкости по своей сути аналогична обычной, но разница в том, что в ее состав молекулы водорода замещают молекулы дейтерия (два тяжелых изотопа водорода). Химическая формула такой жидкости – 2h2O или d2O.

Полутяжелая вода

Такой тип жидкости в чистом виде не существует. Она присутствует практически везде и имеет формулу НDО.

Сверхтяжелая вода

Еще ее называют тритиевой, потому что также как в тяжелой, молекулы водорода заменены тритием. Ее формула Т2О или 3Н2О.

РАССМОТРИМ ВИДЫ ВОДЫ В ЗАВИСИМОСТИ ОТ КОЛИЧЕСТВА СОЛЕЙ

Мягкая и жесткая вода

Если опираться на нормы жесткости воды в Украине, то этот показатель составляет 7 мг-экв/литр. По мировым стандартам, такой уровень считается средней жесткостью. Но для полного понимания, следует отметить, что мягкой водой считается показатель до 2 мг-экв/литр. Это европейский показатель, при котором не наблюдается накипных отложений.

Если рассматривать причины повышения жесткости воды в глобальном плане, то можно отметить несколько основных причин:

  • Глобальные нарушения эко — системы нашей планеты
  • Активное использование химических веществ, как в бытовом, так и промышленном секторах
  • Устаревшие или вообще отсутствующие системы очистки сточных вод
  • Старые водопроводные системы, которые эксплуатируют дольше положенных сроков

Какие методы смягчения воды используют сегодня?

Для эффективного смягчения воды, необходимо устанавливать автоматические . Такие системы работают за счет специального фильтрующего материала – . Никакие «волшебные» добавки, «калгоны» и «антинакипины» не способны смягчить воду. Они работают больше как ингибиторы накипи, которые вроде как не дают карбонатам прилипать к нагревательным элементам.

Но смягчение воды по своей сути – это процесс замещения ионов кальция и магния на ионы натрия, только таким методом Вы можете получить эффективный и экономный результат. Фильтрующий материал в таких системах очистки воды имеет свойства регенерации, за счет чего материал работает 5 — 7 лет до следующей его замены на новый.

Существует 3 вида воды. Состояние воды в природе

Рассмотрим в каком виде бывает вода в природе.

Пресная вода

Это жидкость с минимальной концентрацией солей, которые не превышают 0,01%.

Морская вода

Это моря и океаны, в которых концентрация солей составляет в среднем 34,7%.

Минеральная вода

Это как правило подземная, природная жидкость у которой повышенное содержание биологически активных минералов, а также микроэлементов. Совокупность которых определяет лечебные свойства такой воды. Вот перечень видов минеральных вод:

  • Слабая минерализация
  • Малая минерализация
  • Средняя минерализация
  • Высокая минерализация
  • Рассольная минеральная вода
  • Крепкая рассольная
  • Солоноватая вода — этот тип имеет средний показатель между пресной и морской.
  • Дистиллированная вода — это супер — чистая жидкость, очищенная от солей и других примесей посредством дистилляции.

ВИДЫ ВОДЫ ПОЛУЧЕННЫЕ В СЛЕДСТВИИ ВЗАИМОДЕЙСТВИЯ С РАЗНЫМИ ВЕЩЕСТВАМИ

Шунгитовая вода

Шунгит – это природный минерал. Взаимодействуя с минералом, пресная вода насыщается минералом растворяя его.

Кремниевая вода

Пресная вода, полученная посредством взаимодействия с природным минералом кремнием.

Коралловая вода

Взаимодействуя с кораллами, пресная вода насыщается микроэлементами.
Вода, насыщенная кислородом, посредством обогащения.

Фильтрованная вода

Пресная вода, которая прошла через систему очистки воды с целью повышения ее качеств. позволяют очищать исходную жидкость до любых параметров. Можно точечно удалить один из видов загрязнений, можно установить комплексную систему очистки или использовать бытовую систему обратного осмоса для получения питьевой воды высшей категории.

Серебряная вода

Это жидкость, насыщенная ионами серебра посредством контакта с этим металлом. Что касается этой воды, то здесь необходимо быть аккуратным, так как можно превысить концентрации вещества и получить отравление. Так как передозировка этим веществом также опасна, как свинцом. Это токсичные металлы! Тем более Вы не можете измерить концентрацию содержания серебра в воде домашних условиях.

Золотая вода – аналогичный процесс.

Медная вода – аналогичный процесс.

КЛАССИФИКАЦИЯ ВОДЫ В ЗАВИСИМОСТИ ОТ ЕЕ РАСПОЛОЖЕНИЯ В ГИДРОСФЕРЕ

Подземные воды

  • Это вся жидкость, которая может быть в разных состояниях, которая находится в горных породах верхней части земной коры.
  • Качество жидкости в этих источниках зависит от внешней среды, которую обуславливает человек:
  • Крупные города с некачественно оборудованной системой канализации
  • Крупные строительные работы
  • Крупные промышленные предприятия
  • Большие городские свалки
  • Масштабные животноводческие фермы
  • Сельскохозяйственный сектор коммерческого назначения
  • Автомагистрали государственного значения
  • Как правило, подземные воды используют для водоснабжения загородных домов и коттеджей, поэтому очень важно произвести химический анализ воды перед бытовым использованием воды. Повышенные концентрации загрязнений негативно влияют на здоровье человека, а также выводят из строя сантехнику, отопительную систему и бытовую технику (стиральная машина, бойлер, посудомойка, душ, гидромассажное оборудование).

В зависимости от качества воды, необходимо правильно подобрать систему очистки воды из скважины для эффективного результата.

Субмаринные воды

Их называют еще подводными, так они находятся под океанами и морями и крупными озерами, что можно назвать «вода под водой». Это довольно уникальное природное явление, которое уже давно освоено человеком с глубокой древности. Люди с помощью бамбуковых трубок получали пресную воду из субмаринных источников много веков назад.
Сегодня эти воды используют в качестве дополнения ресурсов водоснабжения. К примеру, в близи юго-восточного побережья Греции, соорудили плотину в море. В конечном итоге было создано пресноводное озеро внутри моря. Суммарная добыча пресной воды в этом месте составляет 1 000 000 кубометров в сутки! Этот источник используют для орошения земель прибрежных территорий.

Каким образом можно использовать «воду под водой»?

Японские специалисты пошли дальше в добыче «воды под водой». Они получили патент на способ добычи пресной воды из субмаринного источника. Инженеры предложили разделять пресную и морскую воду непосредственно прям на дне моря. Над источником устанавливается автоматическая установка с датчиками, которые непрерывно измеряют концентрацию растворенных солей. Если она превышает допустимую величину, подача воды к потребителю автоматически прекращается, и вода сбрасывается в море до тех пор, пока её содержание солей и состав не нормализуются.

Артезианские воды

Это жидкость, залегающая между водоупорными пластами глубоко под землей. Она постоянно находится под гидростатическим давлением, за счет чего создаются водонапорные бассейны. Название этого вида воды пошло еще из провинции Артуа, которая находится во Франции — Артезиа. Там в 12 веке был сооружен первый в Европе глубокий колодец.
Из вышесказанного становится ясно, что подземные и артезианские воды разделены водоупорным слоем. Поэтому жидкость, залегающая на большой глубине, практически не подвергается влиянию жизнедеятельности человека, которые несут неочищенные сточные воды. Но данный факт, не исключает насыщение воды различными примесями из окружающих пород. Также нельзя полностью исключить возможность попадания в артезианские бассейны внешних загрязнителей.
Поверхностные воды – это жидкости находящиеся на поверхности Земли по разным причинам.
Атмосферные воды – это жидкость, которая находится в атмосфере нашей планеты.

ЕСТЕСТВЕННЫЕ ПРИРОДНЫЕ ВИДЫ ВОДЫ

  • Родниковая
  • Дождевая
  • Питьевая

ВИДЫ ВОДЫ ПОЯВИВШИЕСЯ В РЕЗУЛЬТАТЕ ДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА

Водопроводная вода

Жидкость из муниципальных водопроводных систем, которая берет со\вое начало в подземных или поверхностных источниках, проходит доочистку и поставляется потребителю.

Канализационная вода

Это использованный продукт, который попадает в канализационные системы.

Сточные воды

Это загрязненная жидкость, которую необходимо удалят из мест проживания людей. Результат работы промышленности.
Кипяченая вода – жидкость, прошедшая термическую обработку нагреванием до 100 градусов.

Комплексная очистка водопроводной воды

Современные фильтры для воды разрабатываются с учетом того, что качество жидкости из крана с каждым годом понижается. Технологи работают над тем, чтоб очистка была максимально эффективной и максимально экономной в обслуживании. Комплексная фильтрация предусматривает несколько этапов:

Удаление механических примесей

Это нерастворимые частицы – ржавчина, окалина, глина, грунт, ил, песок и другие взвеси. Данный вид загрязнений удаляется посредством с полипропиленовым картриджем. Они бывают разных типоразмеров, правильно подобрать нужный фильтр необходимо исходя из количества проживающих в квартире и пиковых нагрузок по расходу в час.

Смягчение воды

Это самая основная проблема водопроводных магистралей. Карбонатные отложения засоряют все с чем контактирует вода. Дело в том, что государственный ГОСТ в Украине утвердил норму жесткости 7 мг-экв/литр. Но чтобы не образовывались накипные отложения, концентрация должна быть менее 2 мг-экв/литр. Здесь на помощь приходят автоматические фильтры умягчители.

Сегодня мы имеем прекрасную возможность использовать технологии по максимуму. Установка мини-фабрики по производству питьевого продукта высшей категории – это реальность. Современные стали доступными, компактными и не имеют альтернативы. Принцип очистки обратным осмосом издавна исследуется и взят из природы. Это самый эффективный способ получить кристально чистую воду по минимальной себестоимости за литр – 20 копеек!

  • Необычные явления
  • Мониторинг природы
  • Авторские разделы
  • Открываем историю
  • Экстремальный мир
  • Инфо-справка
  • Файловый архив
  • Дискуссии
  • Услуги
  • Инфофронт
  • Информация НФ ОКО
  • Экспорт RSS
  • Полезные ссылки




  • Важные темы


    О воде много известно, но она по-прежнему не перестает нас удивлять новыми открытиями. Поэтому фраза "Вода - это жизнь" для многих из нас пока что ничего не значит. И за беспечное отношение к ней вода жестоко мстит нам. Задумайтесь, что вы знаете о воде? Как ни удивительно, но вода до сих пор остается наиболее малоизученным веществом Природы. Очевидно, это произошло потому, что ее очень много, она вездесуща, она вокруг нас, над нами, под нами, в нас.

    Вода - одно из самых распространенных на Земле соединений. Молекулы воды обнаружены в межзвездном пространстве. Вода входит в состав комет, большинства планет Солнечной системы и их спутников. Количество воды на поверхности земли оценивается в 1,39 ? 1018т. Общий объем воды на Земле составляет около 1 500 000 000 км3. Если эту воду равномерно распределить по поверхности Земли, то толщина ее слоя составила бы почти 4 км.

    Из чего же складывается этот запас воды? Большая часть воды - 97% находится в океанах и морях. Объем воды в океане оценивается в 1 370 000 000 км3. Лишь 3% воды находится на континентах. В реках и озерах земного шара содержится примерно 400 000 км3 пресной воды. Большая часть пресных вод (68,7%) сосредоточена в ледниках и залегающем снежном покрове, основные запасы которых находятся в Антарктиде. Ледяной щит включает около 25 млн км3 воды. Масса ледников Арктики, Антарктики и высокогорных районов - 2,4 ? 1016т. Значительное количество воды содержится в земной коре (подземные воды). Общие запасы подземных вод составляют примерно 8 млн км3. В атмосфере находится 1,3 ? 1013т. воды. В каждый момент времени в ней содержится 13000 км3 воды. Если бы атмосферная вода вдруг стала жидкостью и равномерно растеклась по поверхности Земли, то слой осадков составил бы всего 24 мм.

    Ученые подсчитали и массу воды, имеющейся на нашей планете - 2 000 000 000 млн.т. Здесь учитывается вся вода: морей, океанов, вода в виде пара в атмосфере, и в виде льда, вода, находящаяся в твердой оболочке Земли и наконец, сосредоточенная в биологических объектах.

    Вода входит в состав многих минералов и горных пород, присутствует в почве и во всех организмах. Так, например, тело взрослого человека на 65% состоит из воды. Вода входит в состав всех его органов и тканей: в сердце, легких, почках её около 80%, в крови - 83%, в костях - 30%, в зубной эмали - 0,3%, в биологических жидкостях организма (слюне, желудочном соке, моче и т.д.) - 95-99%.

    Тело рыб содержит 80% воды, водорослей - 90%. Подсчитано, что содержание воды в тканях живых организмов примерно в шесть раз превышает ее количество во всех реках земного шара.

    Вода является необходимым условием существования всех живых организмов на Земле. "Вода дороже золота" - утверждали бедуины всю жизнь кочевавшие в песках. Они знали, что никакие богатства не спасут путника в пустыне, если иссякнут запасы воды. В живом организме вода - это среда, в которой осуществляются химические реакции. Процессы пищеварения и усвоения пищи человеком и животными связаны с переводом питательных веществ в раствор. Вода вымывает из клеток отработанные продукты обмена веществ и играет важную роль в регуляции температуры тела. Исключение ее из организма может привести к смерти уже через несколько дней.

    Человек и животные могут в своем организме синтезировать первичную воду, образовывать ее при сгорании пищевых продуктов и самих тканей. У верблюда, например, жир, содержащийся в горбу, может путем окисления дать 40 л воды.

    Связь между водой и жизнью столь велика, что даже позволила В.И. Вернадскому "рассматривать жизнь, как особую коллоидальную водную систему..., как особое царство природных вод".

    Количество воды, содержащейся в живых существах, составляет в каждый данный момент громадную величину. Силами жизни в течение одного года перемещаются десятые доли процента всего океана, а за несколько сотен лет через живое вещество проходят массы воды, превышающие массу Мирового океана.

    Биохимический состав океанической воды близок к составу крови животных и человека.
    СРАВНИТЕЛЬНОЕ СОДЕРЖАНИЕ ЭЛЕМЕНТОВ В КРОВИ ЧЕЛОВЕКА И В МИРОВОМ ОКЕАНЕ, %
    Элементы Состав крови человека Состав Мирового Океана
    Хлор 49,3 55,0
    Натрий 30,0 30,6
    Кислород 9,9 5,6
    Калий 1,8 1,1
    Кальций 0,8 1,2

    Три состояния воды



    Физико-химические свойства воды

    Многие столетия люди не знали, что представляет собой вода, и как появилась она на планете. До XIX века люди не знали, что вода - химическое соединение. Ее считали обычным химическим элементом. После этого свыше ста лет все и всюду считали, что вода - соединение, описываемое единственно возможной формулой H2O.

    В 1932 году мир облетела сенсация: кроме обычной воды, в природе существует еще и тяжелая вода. Сегодня известно, что изотопных разновидностей воды может быть 135. Состав воды, даже полностью освобожденной от минеральных и органических примесей, сложен и многообразен. Такое непростое это "простейшее соединение" - вода.

    Всё многообразие свойств воды и необычность их проявления определяется, в конечном счете, физической природой этих атомов, способом их объединения в молекулу и группировкой образовавшихся молекул. Постоянно соприкасаясь со всевозможными веществами, вода фактически всегда представляет собой раствор различного, зачастую очень сложного состава. Она проявляет себя, как универсальный растворитель. Ее растворяющему действию, в той или иной мере, подвластны и твердые тела, и жидкости, и газы.

    Исследователи раскрывают все более тонкие и сложные механизмы "внутренней организации" водной массы. Изучение воды дает все новые факты, углубляя и усложняя наши представления об окружающем мире. Развитие этих представлений помогает нам понять свойства воды и особенности взаимодействия ее с другими веществами.

    Воду считают самым трудным из всех веществ, изучаемых физиками и химиками. Химический состав вод может быть одинаков, а их воздействие на организм разным, потому что каждая вода формировалась в конкретных условиях. И если жизнь - это одушевленная вода, то, также как и жизнь, вода многолика и характеристики ее бесконечны.

    Вода, на первый взгляд, простое химическое соединение водорода и кислорода, но именно она является универсальным растворителем значительного количества веществ, поэтому в природе химически чистой воды нет. Особенно ярко свойства растворителя проявляются в морской воде, в ней растворяются почти все вещества. Около семидесяти элементов Периодической системы содержатся в ней в обнаруживаемых количествах. Даже редкие и радиоактивные элементы находятся в водах морей и океанов. В наибольшем количестве содержатся хлор, натрий, магний, сера, кальций, калий, бром, углерод, стронций, бор. Одного только золота растворено в водах океана по 3 кг на душу населения Земли.

    По содержанию растворенных в ней веществ вода делится на 3 класса: пресная, соленая и рассолы. Наибольшее значение в быту имеет пресная вода. Хотя вода покрывает три четверти поверхности Земли и запасы ее огромны и постоянно поддерживаются кругооборотом воды в природе, проблема обеспечения пресной водой во многих районах земного шара не решена и с развтием научно-технического прогресса обостряется.

    Природная вода не бывает совершенно чистой. Наиболее чистой является дождевая вода, но и она содержит незначительные количества различных примесей, которые захватывает из воздуха.

    Наличие в воде различных веществ свидетельствует о ее высокой растворяющей способности. Это основное свойство воды. Вся практическая деятельность человека, с самой глубокой древности, связана с использованием воды и водных растворов и для приготовления пищи и для других житейских надобностей.

    Роль воды в жизни нашей планеты удивительна и, как ни странно, раскрыта еще не до конца. Океаны, покрывающие Землю, являются единым огромным своеобразным термостатом, который летом не дает Земле перегреваться, а зимой постоянно снабжает континенты теплом. Водная поверхность планеты поглощает избыток углекислого газа в атмосфере, иначе Земля бы перегрелась из-за "парникового эффекта".

    Интересно и, оказывается, очень важно, что, в отличие от других веществ, вода при замерзании не уплотняется, а расширяется. Молекулы льдоподобной воды расположены таким образом, что между ними возникают большие пустоты, а поэтому лед рыхлообразный, то есть легче, чем жидкая вода, и поэтому не тонет. Представим себе на минуту, что вода не обладала бы этим чрезвычайно редким свойством. Что могло бы произойти? В этом случае жизнь на нашей планете не могла бы даже возникнуть. Лед, едва появившись на поверхности водоема, как любое другое твердое вещество, тут же погружался бы на дно, и тогда промерзли бы насквозь не только пруды и реки, но и океаны. Молекулярная структура воды. Анализ данных, полученных из спектров поглощения, показал, что три атома в молекуле воды образуют равнобедренный треугольник с двумя атомами водорода в основании и кислородом в вершине: Валентный угол HOH равен 104,31°. Атомы водорода так глубоко "внедрены" в атом кислорода, что молекула оказывается почти сферической.

    Температура замерзания и таяния воды 0° С, а кипения - 100° С. Толстый слой воды имеет голубой цвет, что обусловливается не только ее физическими свойствами, но и присутствием взвешенных частиц примесей. Вода горных рек зеленоватая из-за содержащихся в ней взвешенных частиц карбоната кальция. Чистая вода - плохой проводник электричества.

    Сжимаемость воды очень мала. Плотность воды максимальна при 4° С. Это объясняется свойствами водородных связей ее молекул. Если оставить воду в открытой емкости, то она постепенно испарится - все ее молекулы перейдут в воздух. В то же время вода, находящаяся в плотно закупоренном сосуде испаряется лишь частично, т.е. при определенном давлении водяных паров между водой и воздухом, находящимся над ней, устанавливается равновесие. Давление паров в равновесии зависит от температуры и называется давлением насыщенного пара (или его упругостью). При обычном давлении 760 мм рт.ст. вода кипит при 100° С, а на высоте 2900 м над уровнем моря атмосферное давление падает до 525 мм рт.ст. и температура кипения оказывается равной 90° С. Испарение происходит даже с поверхности снега и льда, именно поэтому высыхает на морозе мокрое белье. Вязкость воды с ростом температуры быстро уменьшается и при 100° С оказывается в 8 раз меньше, чем при 0° С.
    Физико-химико-информационные свойства воды

    Основные физико-химические свойства воды влияют на все процессы, в которых вода принимает участие. Наиболее важны, на наш взгляд, следующие свойства.

    1. Поверхностное натяжение - это степень сцепления молекул воды друг с другом. Органические и неорганические соединения растворяются в жидких средах, содержащих воду, поэтому поверхностное натяжение потребляемой нами воды имеет большое значение. Любая жидкость в организме содержит воду и, так или иначе, участвует в реакциях. Вода в организме играет роль растворителя, обеспечивает транспортную систему и служит средой обитания наших клеток. Поэтому, чем ниже поверхностное натяжение, соответственно, выше растворяющая способность воды, тем лучше вода выполняет свои основные функции. В том числе и роль транспортной системы. Поверхностное натяжение определяет смачиваемость воды и ее растворяющие свойства. Чем ниже поверхностное натяжение, тем выше растворяющие свойства, тем выше текучесть. Все три величины - поверхностное натяжение, текучесть и растворяющая способность - связаны между собой.

    2. Кислотно-щелочное равновесие воды. Основные жизненные среды (кровь, лимфа, слюна, межклеточная жидкость, спинномозговая жидкость и др.) имеют слабощелочную реакцию. При сдвигах их в кислую сторону, меняются биохимические процессы, организм закисляется. Это ведет к развитию болезней.

    3. Окислительно-восстановительный потенциал воды. Это способность воды вступать в биохимические реакции. Она определяется наличием свободных электронов в воде. Это очень важный показатель для организма человека.

    4. Жесткость воды - наличие в ней различных солей.

    5. Температура воды определяет скорость протекания биохимических реакций.

    6. Минерализация воды. Наличие в воде макро- и микроэлементов необходимо для жизнедеятельности организма человека. Жидкости организма представляют собой электролиты, восполняемые минералами, в том числе и за счет воды.

    7. Экология воды - химическое загрязнение и биогенное загрязнение. Чистота воды - наличие в ней примесей, бактерий, солей тяжелых металлов, хлора и др.

    8. Структура воды. Вода представляет собой жидкий кристалл. Диполи молекулы воды ориентируются в пространстве определенным образом, соединяясь в структурные конгломераты. Это позволяет жидкости составлять единую биоэнергоинформационную среду. Когда вода находится в состоянии твердого кристалла (льда), молекулярная решетка жестко ориентирована. При таянии разрываются жесткие структурные молекулярные связи. И часть молекул, высвобождаясь, образует жидкую среду. В организме вся жидкость структурирована особым образом.

    9. Информационная память воды. За счет структуры кристалла происходит запись информации, исходящей от биополя. Это одно из очень важных свойств воды, имеющее большое значение для всего живого.

    10. Хадо - волновая энергетика воды.

    Жесткость-мягкость воды

    Жесткостью называют свойство воды, обусловленное наличием в ней растворимых солей кальция и магния.

    Понятие жесткости воды принято связывать с катионами кальция (Са2+) и в меньшей степени магния (Mg2+). В действительности, все двухвалентные катионы в той или иной степени влияют на жесткость. Они взаимодействуют с анионами, образуя соединения (соли жесткости), способные выпадать в осадок. Одновалентные катионы (например, натрий Na+) таким свойством не обладают.

    На практике стронций, железо и марганец оказывают на жесткость столько небольшое влияние, что ими, как правило, пренебрегают. Алюминий (Al3+) и трехвалентное железо (Fe3+) также влияют на жесткость, но при уровнях рН, встречающихся в природных водах, их растворимость и, соответственно, "вклад" в жесткость ничтожно малы. Аналогично, не учитывается и незначительное влияние бария (Ba2+).

    Различают следующие виды жесткости.
    Общая жесткость - определяется суммарной концентрацией ионов кальция и магния. Представляет собой сумму карбонатной (временной) и некарбонатной (постоянной) жесткости.
    Карбонатная жесткость - обусловлена наличием в воде гидрокарбонатов и карбонатов (при рН>8.3) кальция и магния. Данный тип жесткости почти полностью устраняется при кипячении воды и поэтому называется временной жесткостью. При нагреве воды гидрокарбонаты распадаются с образованием угольной кислоты и выпадением в осадок карбоната кальция и гидроксида магния.
    Некарбонатная жесткость - обусловлена присутствием кальциевых и магниевых солей сильных кислот (серной, азотной, соляной) и при кипячении не устраняется (постоянная жесткость).

    Ионы кальция (Ca2+) и магния (Mg2+), а также других щелочноземельных металлов, обуславливающих жесткость, присутствуют во всех минерализованных водах. Их источником являются природные залежи известняков, гипса и доломитов. Ионы кальция и магния поступают в воду в результате взаимодействия растворенного диоксида углерода с минералами и при других процессах растворения и химического выветривания горных пород. Источником этих ионов могут служить также микробиологические процессы, протекающие в почвах на площади водосбора, в донных отложениях, а также сточные воды различных предприятий.

    Обычно в маломинерализованных водах преобладает (до 70-80%) жесткость, обусловленная ионами кальция (хотя в отдельных редких случаях магниевая жесткость может достигать 50-60%). С увеличением степени минерализации воды содержание ионов кальция (Ca2+) быстро падает и редко превышает 1 г/л, содержание же ионов магния (Mg2+) в высокоминерализованных водах может достигать несколько граммов, а в соленых озерах - десятков граммов на один литр воды.

    В целом, жесткость поверхностных вод, как правило, меньше жесткости вод подземных. Жесткость поверхностных вод подвержена заметным сезонным колебаниям, достигая обычно наибольшего значения в конце зимы и наименьшего в период половодья, когда обильно разбавляется мягкой дождевой и талой водой. Морская и океанская вода имеют очень высокую жесткость (десятки-сотни мг-экв/дм3).

    Влияние жесткости на качество воды

    С точки зрения применения воды для питьевых нужд, ее приемлемость по степени жесткости может существенно варьироваться в зависимости от местных условий. Порог вкуса для иона кальция лежит (в пересчете на мг-эквивалент) в диапазоне 2-6 мг-экв/л, в зависимости от соответствующего аниона, а порог вкуса для магния и того ниже. В некоторых случаях для потребителей приемлема вода с жесткостью выше 10 мг-экв/л. Высокая жесткость ухудшает органолептические свойства воды, придавая ей горьковатый вкус и оказывая отрицательное действие на органы пищеварения.
    Всемирная Организация Здравоохранения не предлагает какой-либо рекомендуемой величины жесткости по показаниям влияния на здоровье. В материалах ВОЗ говорится о том, что хотя ряд исследований и выявил статистически обратную зависимость между жесткостью питьевой воды и сердечно-сосудистыми заболеваниями, имеющиеся данные недостаточны для вывода о причинном характере этой связи. Аналогичным образом, однозначно не доказано, что мягкая вода оказывает отрицательный баланс минеральных веществ в организме человека.

    Вместе с тем, в зависимости от рН и щелочности, вода с жесткостью выше 4 мг-экв/л может вызвать в распределительной системе отложение шлаков и накипи (карбоната кальция), особенно при нагревании. Именно поэтому нормами Котлонадзора вводятся очень строгие требования к величине жесткости воды, используемой для питания котлов (0,05-0,1 мг-экв/л).

    Кроме того, при взаимодействии солей жесткости с моющими веществами (мыло, стиральные порошки, шампуни) происходит образование "мыльных шлаков" в виде пены. Это приводит не только к значительному перерасходу моющих средств. Такая пена после высыхания остается в виде налета на сантехнике, белье, человеческой коже, волосах (неприятное чувство "жестких" волос хорошо известно многим).

    Главным отрицательным воздействием этих шлаков на человека является то, что они разрушают естественную жировую пленку, которой всегда покрыта нормальная кожа и забивают ее поры. Признаком такого негативного воздействия является характерный "скрип" чисто вымытой кожи или волос.

    Оказывается, что вызывающее у некоторых раздражение чувство "мылкости" после пользования мягкой водой является признаком того, что защитная жировая пленка на коже цела и невредима. Именно она и скользит. В противном случае, приходится тратиться на лосьоны, умягчающие и увлажняющие кремы и прочие хитрости для восстановления той защиты кожи, которой нас и так снабдила матушка Природа.

    Вместе с тем, необходимо упомянуть и о другой стороне медали. Мягкая вода с жесткостью менее 2 мг-экв/л имеет низкую буферную емкость (щелочность) и может, в зависимости от уровня рН и ряда других факторов, оказывать повышенное коррозионное воздействие на водопроводные трубы. Поэтому, в ряде применений (особенно в теплотехнике) иногда приходится проводить специальную обработку воды с целью достижения оптимального соотношения между жесткостью воды и ее коррозионной активностью.

    Температура воды

    Вода - одно из самых удивительных веществ в природе. Например, ее теплоемкость - 4,1868 кДж/кг, что почти вдвое превышает таковую растительных масел, ацетона, фенола, глицерина, спирта, парафина. До сих пор дискутируется проблема 37-градусной температуры в животном мире. Как известно, при нагревании любого вещества теплоемкость его возрастает. Любого, кроме воды: при ее нагревании от 0 до 37 градусов теплоемкость падает, и лишь при дальнейшем нагревании начинает возрастать.

    Этот факт означает, что при 36-37 градусах для повышения температуры некоторого объема воды необходимо минимальное количество тепла. Видимо, именно это свойство воды явилось селектирующим фактором эволюции в выработке теплокровности на уровне 37° С.

    Температура воды - величина независимая, одинаково влияет на протекание физиологических процессов и физико-химических реакций. При повышении температуры на 10° С в 2-3 раза ускоряется обмен веществ в живом организме, уменьшается растворимость газов, многократно возрастает активный перенос элементов и их взаимодействие.

    Человек не может жить при температуре тела выше 42° С. Это последняя отметка на термометре.

    Нам еще предстоит разобраться, что происходит в организме с водой, когда температура поднимается с 36,6° до 37,1-37,2° С. Почему резко усиливается иммунитет? Какое состояние воды межклеточной, внутриклеточной и сосудистой обеспечивает активизацию всех защитных процессов. А что несет с собой температура 38° С? И где грань оптимального иммунитета? Вода готовит нам еще много тайн и загадок. И цена этим отгадкам - наша жизнь!

    Поверхностное натяжение

    Одним из очень важных параметров воды является поверхностное натяжение. Оно определяет силу сцепления между молекулами воды, а также геометрическую форму поверхности жидкости. Например, из-за сил поверхностного натяжения в разных случаях формируется капля, лужица, струя и т.д. Летучесть (испаряемость) жидкости тоже зависит от сил сцепления молекул. Чем меньше поверхностное натяжение, тем более летуча жидкость.

    Самым низким поверхностным натяжением обладают спирты и растворители. Это, в свою очередь, определяет их активность, т.е. способность взаимодействовать с другими веществами. Если бы вода имела низкое поверхностное натяжение, она бы улетучилась или испарилась. При выливании воды из сосуда с широким горлом на поверхности воды на мгновение образуется выпуклость и определенное время она удерживается силами межмолекулярного сцепления. Потом происходит разрыв "верхней пленки" и жидкость выливается. Зрительно поверхностное натяжение можно представить следующим образом: если медленно наливать в чашку чай до краев, то какое-то время он не будет выливаться через край и в проходящем свете можно увидеть, что над поверхностью жидкости образовалась тончайшая пленка, которая не дает чаю выливаться. Она набухает по мере доливания, и только при, как говорится, "последней капле" жидкость выливается через край.

    Поверхностное натяжение можно измерить. Единицей измерения является дин/см2. Водопроводная вода имеет поверхностное натяжение около 73 дин/см2, внутри- и внеклеточная жидкость около 43 дин/см2.

    Существуют способы снижения поверхностного натяжения. Это нагревание, добавление биологически активных веществ (стиральных порошков, мыла, паст и т.д.). Степень поверхностного натяжения определяет "жидкость" воды. Образно говоря, вода бывает более "густая" и более "жидкая". Желательно, чтобы в организм поступала более "жидкая" вода, тогда клеткам не надо будет тратить энергию на преодоление поверхностного натяжения. Вода с низким поверхностным натяжением более биологически доступна. Она легче вступает в межмолекулярные взаимодействия.

    Минерализация

    Очень важен минеральный состав воды. Человек употребляет для питья воду, содержащую от 0,02 до 2 граммов минеральных веществ в 1 литре. Большое значение имеют вещества, находящиеся в малых дозах, но играющие важную роль во многих физиологических процессах организма. Например, длительное потребление питьевой воды, содержащей фтор в количестве менее 0,6 мг/л, ведет к развитию кариеса зубов.

    Чрезвычайно важен баланс минерального состава воды. Фтор, йод, хлор, селен, кальций и многие другие элементы жизненно необходимы.

    Недостаток или избыток их ионов в воде на обширных территориях Российской Федерации и зарубежных стран - серьезнейшая проблема, пассивность при решении которой, хотя бы фармакологическими методами, приводит к катастрофическим последствиям - пандемическим заболеваниям.

    Минерализация природных вод, определяющая их удельную электропроводность, изменяется в широких пределах. Большинство рек имеет минерализацию от нескольких десятков миллиграммов в литре до нескольких сотен. Их удельная электропроводность варьирует от 20 мкСм/см до 1500 мкСм/см. Минерализация подземных вод и соленых озер изменяется в интервале от 40-50 мг/дм3 до 650 г/кг (плотность в этом случае уже значительно отличается от единицы). Удельная электропроводность атмосферных осадков (с минерализацией от 3 до 60 мг/дм3) составляет величины 20-120 мкСм/см.

    Многие производства, сельское хозяйство, предприятия питьевого водоснабжения предъявляют определенные требования к качеству вод, в частности, к минерализации, так как воды, содержащие большое количество солей, отрицательно влияют на растительные и животные организмы, технологию производства и качество продукции, вызывают образование накипи на стенках котлов, коррозию, засоление почв.

    В соответствии с гигиеническими требованиями к качеству питьевой воды суммарная минерализация не должна превышать величины 1000 мг/дм3. По согласованию с органами департамента санэпиднадзора для водопровода, подающего воду без соответствующей обработки (например, из артезианских скважин), допускается увеличение минерализации до 1500 мг/дм3.

    Три состояния воды

    Известно, что в природе вода может находиться в трех различных состояниях, таких как: твердое, жидкое или газообразное. Облака, снег и дождь представляют собой различные состояния воды. Облако состоит из множества капелек воды или кристалликов льда, снежинка - это совокупность мельчайших кристалликов льда, а дождь - всего лишь жидкая вода.
    Вода, находящаяся в газообразном состоянии, называется водяным паром. Когда говорят о количестве влажности в воздухе, обычно подразумевают количество водяных паров. Если воздух описывается как "влажный", это означает, что в воздухе содержится большое количество водяных паров.
    Лед - твердое состояние воды. Толстый слой льда имеет голубоватый цвет, что связано с особенностями преломления им света. Сжимаемость льда очень низка. Лед при нормальном давлении существует только при температуре 0° С или ниже и обладает меньшей плотностью, чем холодная вода. Именно поэтому айсберги плавают в воде. При этом, поскольку отношение плотностей льда и воды при 0° С постоянно, лед всегда выступает из воды на определенную часть, а именно на 1/5 своего объема.

    Окислительно-восстановительный потенциал

    Основными процессами, обеспечивающими жизнедеятельность любого организма, являются окислительно-восстановительные реакции, т.е. реакции, связанные с передачей или присоединением электронов.

    Во время окислительных или восстановительных реакций изменяется электрический потенциал окисляемого или восстанавливаемого вещества: одно вещество, отдавая свои электроны и заряжаясь положительно, окисляется, другое, приобретая электроны и заряжаясь отрицательно - восстанавливается. Разность электрических потенциалов между ними и есть окислительно-восстановительный потенциал (ОВП).

    Окислительно-восстановительный потенциал является мерой химической активности элементов или их соединений в обратимых химических процессах, связанных с изменением заряда ионов в растворах.

    В переводе на более понятный неспециалисту язык это означает, что ОВП, называемый также редокс-потенциал (от английского RedOx - Reduction/Oxidation), характеризует степень активности электронов в окислительно-восстановительных реакциях, т.е. реакциях, связанных с присоединением или передачей электронов. При измерениях (в электрохимии) величина этой разности обозначается как Eh и выражается в милливольтах. Чем выше концентрация компонентов, способных к окислению, к концентрации компонентов, могущих восстанавливаться, тем выше показатель редокс-потенциала. Такие вещества как кислород и хлор стремятся к принятию электронов и имеют высокий электрический потенциал, следовательно, окислителем может быть не только кислород, но и другие вещества (в частности, хлор), а вещества типа водорода, наоборот, охотно отдают электроны и имеют низкий электрический потенциал. Наибольший окислительной способностью обладает кислород, а восстановительной - водород, но между ними располагаются и другие вещества, присутствующие в воде и менее интенсивно выполняющие роль либо окислителей либо восстановителей.

    Значение окислительно-восстановительного потенциала для каждой окислительно-восстановительной реакции может иметь как положительное, так и отрицательное значение.

    В природной воде значение Eh колеблется от -400 до +700 мВ, что определяется всей совокупностью происходящих в ней окислительных и восстановительных процессов. В условиях равновесия значение ОВП определенным образом характеризует водную среду, и его величина позволяет делать некоторые общие выводы о химическом составе воды.

    В биохимии, в отличие от электрохимии, величины редокс-потенциала выражаются не в милливольтах, а в условных единицах rH (reduction Hydrogenii). Перевод результатов измерения ОВП при помощи прибора в условные единицы можно провести используя формулу Нернста или специальные таблицы.

    "0" - означает чистый водород
    "42" - чистый кислород
    "28" - нейтральная среда
    pH и rH тесно взаимосвязаны.

    Окислительные процессы понижают показатель кислотно-щелочного равновесия (чем выше rH, тем ниже pH), восстановительные - способствуют повышению pH. В свою очередь показатель pH влияет на величину rH.

    В организме человека энергия, выделяемая в ходе окислительно-восстановительных реакций, расходуется на поддержание гомеостаза (относительное динамическое постоянство состава и свойств внутренней среды и устойчивость основных физиологических функций организма) и регенерацию клеток организма, т.е. на обеспечение процессов жизнедеятельности организма.

    ОВП внутренней среды организма человека, измеренный на платиновом электроде относительно хлорсеребряного электрона сравнения, в норме всегда меньше нуля, т.е. имеет отрицательные значения, которые обычно находятся в пределах от -100 до -200 милливольт. ОВП питьевой воды, измеренный таким же способом, практически всегда больше нуля, обычно находится в пределах от +100 до +400 мВ. Это справедливо практически для всех типов питьевой воды - той, которая течет из водопроводных кранов во всех городах мира, которая продается в стеклянных и пластиковых бутылках, которая получается после очистки в установках обратного осмоса и большинства разнообразных больших и малых водоочистительных систем.

    Указанные различия ОВП внутренней среды организма человека и питьевой воды означают, что активность электронов во внутренней среде организма человека намного выше, чем активность электронов в питьевой воде.

    Активность электронов является важнейшей характеристикой внутренней среды организма, поскольку напрямую связана с фундаментальными процессами жизнедеятельности. Практически все биологически важные системы, определяющие аккумуляцию и потребление энергии, репликацию и передачу наследственных признаков, всевозможные ферментативные системы организма, содержат молекулярные структуры с разделенными зарядами, напряженность электрического поля между которыми достигает 104 - 106 В/см. Исследования последних лет позволили установить, что именно эти поля в значительной мере определяют перенос зарядов в биологических системах и обусловливают селективность и автоконтроль отдельных стадий сложных биохимических превращений, и что ОВП, как показатель активности электронов, оказывает значительное влияние на функциональные свойства электроактивных компонентов биологических систем.

    Когда обычная питьевая вода проникает в ткани человеческого (или иного) организма, она отнимает электроны от клеток и тканей, которые состоят из воды на 80-90%. В результате этого биологические структуры организма (клеточные мембраны, органоиды клеток, нуклеиновые кислоты и другие) подвергаются окислительному разрушению. Так организм изнашивается, стареет, жизненно-важные органы теряют свою функцию. Но эти негативные процессы могут быть замедлены, если в организм с питьем и пищей поступает вода, обладающая свойствами внутренней среды организма, т.е. обладающая защитными восстановительными свойствами. Это подтверждается многочисленными исследованиями в специализированных научных центрах в России и за рубежом.

    Для того, чтобы организм оптимальным образом использовал в обменных процессах питьевую воду с положительным значением окислительно-восстановительного потенциала, ее ОВП должен соответствовать значению ОВП внутренней среды организма. Необходимое изменение ОВП воды в организме происходит за счет затраты электрической энергии клеточных мембран, т.е. энергии самого высокого уровня, энергии, которая фактически является конечным продуктом биохимической цепи трансформации питательных веществ.

    Количество энергии, затрачиваемой организмом на достижение биосовместимости воды, пропорционально ее количеству и разности ОВП воды и внутренней среды организма.

    Если поступающая в организм питьевая вода имеет ОВП близкий к значению ОВП внутренней среды организма человека, то электрическая энергия клеточных мембран (жизненная энергия организма) не расходуется на коррекцию активности электронов воды и вода тотчас же усваивается, поскольку обладает биологической совместимостью по этому параметру. Если питьевая вода имеет ОВП более отрицательный, чем ОВП внутренней среды организма, то она подпитывает его этой энергией, которая используется клетками как энергетический резерв антиоксидантной защиты организма от неблагоприятного влияния внешней среды.

    Другие снежинки

    Фотографии кристаллов воды, полученные Кеннетом Г. Либрехтом с помощью микроскопа высокого разрешения

    Вода в природе

    1. Вода в природе. Вода -- весьма распространенное на Земле вещество. Почти 3/4 поверхности земного шара покрыты водой, образующей океаны, моря, реки и озера. Много воды находится в газообразном состоянии в виде паров в атмосфере; в виде огромных масс снега и льда лежит она круглый год на вершинах высоких гор и в полярных странах. В недрах земли также находитcя вода, пропитывающая почву и горные породы.

    Природная вода не бывает совершенно чистой. Наиболее чистой является дождевая вода, но и она содержит незначительные количества различных примесей, которые захватывает из воздуха.

    Количество примесей в пресных водах обычно лежит в пределах от 0,01 до 0,1% (масс.). Морская вода содержит 3,5% (масс.) растворенных веществ, главную массу которых составляет хлорид натрия (поваренная соль).

    Чтобы освободить природную воду от взвешенных в ней частиц, ее фильтруют сквозь слой пористого вещества, например, угля, обожженной глины и т. п. При фильтровании больших количеств воды пользуются фильтрами из песка и гравия. Фильтры задерживают также большую часть бактерий. Кроме того, для обеззараживания питьевой воды ее хлорируют; для полной стерилизации воды требуется не более 0,7 г хлора на 1 т воды.

    Фильтрованием можно удалить из воды только нерастворимые примеси. Растворенные вещества удаляют из нее путем перегонки (дистилляции) или ионного обмена.

    Вода имеет очень большое значение в жизни растений, животных и человека. Согласно современным представлениям, само происхождение жизни связывается с морем. Во всяком организме вода представляет собой среду, в которой протекают химические процессы, обеспечивающие жизнедеятельность организма; кроме того, она сама принимает участие в целом ряде биохимических реакций.

    2. Физические свойства воды. Чистая вода представляет собой бесцветную прозрачную жидкость. Плотность воды при переходе ее из твердого состояния в жидкое не уменьшается, как почти у всех других веществ, а возрастает. При нагревании воды от 0 до 4°С плотность ее также увеличивается. При 4°С вода имеет максимальную плотность, и лишь при дальнейшем нагревании ее плотность уменьшается.

    Если бы при понижении температуры и при переходе из жидкого состояния в твердое плотность воды изменялась так же, как это происходит у подавляющего большинства веществ, то при приближении зимы поверхностные слои природных вод охлаждались. бы до 0°С и опускались на дно, освобождая место более теплым слоям, и так продолжалось бы до тех пор, пока вся масса водоема не приобрела бы температуру 0°С. Далее вода начинала бы замерзать, образующиеся льдины погружались бы на дно и водоем промерзал бы на всю его глубину. При этом многие формы жизни в воде были бы невозможны. Но так как наибольшей плотность вода достигает при 4 °С, то перемещение ее слоев, вызываемое охлаждением, заканчивается при достижении этой температуры. При дальнейшем понижении температуры охлажденный слой, обладающий меньшей плотностью, остается на поверхности, замерзает и тем самым защищает лежащие ниже слои от дальнейшего охлаждения и замерзания.

    Большое значение в жизни природы имеет и тот факт, что вода. обладает аномально высокой теплоемкостью , Поэтому.в ночное время, а также при переходе от лета к зиме вода остывает медленно, а днем или при переходе от зимы к лету так же медленно нагревается, являясь, таким образом, регулятором температуры на земном шаре.

    В связи с тем, что при плавлении льда объем, занимаемый водой, уменьшается, давление понижает температуру плавления льда. Эта вытекает из принципа Ле Шателье. Действительно, пусть. лед и жидкая вода находятся в равновесии при О°С. При увеличении давления равновесие, согласно принципу Ле Шателье, сместится в сторону образования той фазы, которая при той же температуре занимает меньший объем. Этой фазой является в данном случае жидкость. Таким образом, возрастание давления при О°С вызывает превращение льда в жидкость, а это и означает, что температура плавления льда снижается.

    Молекула воды имеет угловое строение; входящие в ее состав ядра образуют равнобедренный треугольник, в основании которого находятся два протона, а в вершине -- ядро атома кислорода, Межъядерные расстояния О--Н близки к 0,1 нм, расстояние между ядрами атомов водорода равно примерно 0,15 нм. Из восьми электронов, составляющих внешний электронный слой атома кислорода в молекуле воды

    две электронные пары образуют ковалентные связи О--Н, а остальные четыре электрона представляют собой две неподеленных электронных пары.

    Атом кислорода в молекуле воды находится в состоянии -гибридизации. Поэтому валентный угол НОН (104,3°) близок к тетраэдрическому (109,5°). Электроны, образующие связи О--Н, смещены к более электроотрицательному атому кислорода. В результате атомы водорода приобретают эффективные положительные заряды, так что на этих атомах создаются два положительных полюса. Центры отрицательных зарядов неподеленных электронных пар атома кислорода, находящиеся на гибридных - орбиталях, смещены относительно ядра атома и создают два отрицательных полюса

    Молекулярная масса парообразной воды равна 18 и отвечает ее простейшей формуле. Однако молекулярная масса жидкой воды, определяемая путем изучения ее растворов в других растворителях оказывается более, высокой. Это свидетельствует о том, что в жидкой воде происходит ассоциация молекул, т. е. соединение их в более сложные агрегаты. Такой вывод подтверждается и аномально высокими значениями температур плавления и кипения воды. Ассоциация молекул воды вызвана образованием между ними водородных связей.

    В твердой воде (лед) атом кислорода каждой молекулы участвует в образовании двух водородных связей с соседними молекулами воды согласно схеме,

    в которой водородные связи показаны пунктиром. Схема объемной структуры льда изображена на рисунке. Образование водородных связей приводит к такому расположению молекул воды, при котором они соприкасаются друг с другом своими разноименными полюсами. Молекулы образуют слои, причем каждая из них связана с тремя молекулами, принадлежащими к тому же слою, и с одной -- из соседнего слоя. Структура льда принадлежит к наименее плотным структурам, в ней существуют пустоты, размеры наименее плотным структурам, в ней существуют пустоты, размеры которых несколько превышают размеры молекулы.

    При плавлении льда его структура разрушается. Но и в жидкой воде сохраняются водородные связи между молекулами: образуются ассоциаты -- как бы обломки структуры льда, -- состоящих из большего или меньшего числа молекул воды. Однако в отличит от льда каждый ассоциат существует очень короткое время: постоянно происходит разрушение одних и образование других агрегатов. В пустотах таких “ледяных” агрегатов могут размещаться одиночные молекулы воды; при этом упаковка молекул воды становится более плотной. Именно поэтому при плавлении льда объем, занимаемый водой, уменьшается, а ее плотность возрастает.

    По мере нагревания воды обломков структуры льда в ней становится все меньше, что приводит к дальнейшему повышению плотности воды. В интервале температур от 0 до 4°С этот эффект преобладает над тепловым расширением, так что плотность воды продолжает возрастать. Однако при нагревании выше 4°С преобладает влияние усиления теплового движения молекул и плотность воды уменьшается. Поэтому при 4°С вода обладает максимальной плотностью.

    При нагревании воды часть теплоты затрачивается на разрыв водородных связей (энергия разрыва водородной связи в воде составляет примерно 25 кДж/моль). Этим объясняется высокая теплоемкость воды.

    Водородные связи между молекулами воды полностью разрываются только при переходе воды в пар.

    3. Диаграмма состояния воды. Диаграмма состояния (или фазовая диаграмма) представляет собой графическое изображение зависимости между величинами, характеризующими состояние системы, и фазовыми превращениями в системе (переход из твердого состояния в жидкое, из жидкого в газообразной и т. д.). Диаграммы состояния широко применяются в химии. Для однокомпонентных систем обычно используются диаграммы состояния, показывающие зависимость фазовых превращений от температуры и давления; они называются диаграммами состояния в координатах Р --Т.

    На рисунке приведена в схематической форме (без строгого соблюдения масштаба) диаграмма состояния воды. Любой точке на диаграмме отвечают определенные значения температуры и давления.

    Диаграмма показывает те состояния воды, которые термодинамически устойчивы при определенных значениях температуры и давления. Она состоит из трех кривых, разграничивающих все возможные температуры и давления на три области, отвечающие льду, жидкости и пару.

    Рассмотрим каждую из кривых более подробно. Начнем с кривой ОА , отделяющей область пара от области жидкого состояния. Представим себе цилиндр, из которого удален воздух, после чего в него введено некоторое количество чистой, свободной от растворенных веществ, в том числе от газов, воды; цилиндр снабжен поршнем, который закреплен в некотором положении. Через некоторое время часть воды испарится и над ее поверхностью будет находиться насыщенный пар. Можно измерить его давление и убедиться в том, что оно не изменяется с течением времени и не зависит от положения поршня. Если увеличить температуру всей системы и вновь измерить давление насыщенного пара, то окажется, что оно возросло. Повторяя такие измерения при различных температурах, найдем зависимость давления насыщенного водяного пара от температуры. Кривая ОА представляет собой график этой зависимости: точки кривой показывают те пары значений температуры и давления, при которых жидкая вода и водяной пар находятся в равновесии друг с другом -- сосуществуют. Кривая ОА называется кривой равновесия жидкость--пар или кривой кипения . В таблице приведены значения давления насыщенного водяного пара при нескольких температурах.

    Попытаемся осуществить в цилиндре давление, отличное от равновесного, например, меньшее, чем равновесное. Для этого освободим поршень и поднимем его. В первый момент давление в цилиндре, действительно, упадет, но вскоре равновесие восстановится: испарится добавочно некоторое количество воды и давление вновь достигнет равновесного значения. Только тогда, когда вся вода испарится, можно осуществить давление, меньшее, чем равновесное. Отсюда следует, что точкам, лежащим на диаграмме состояния ниже или правее кривой ОА, отвечает область пара. Если пытаться создать давление, превышающее равновесное, то этого можно достичь, лишь опустив поршень до поверхности воды. Иначе говоря, точкам диаграммы, лежащим выше или левее кривой ОА, отвечает область жидкого состояния.

    До каких пор простираются влево области жидкого и парообразного состояния? Наметим по одной точке в обеих областях и будем двигаться от них горизонтально влево. Этому движению точек на диаграмме отвечает охлаждение жидкости или пара при постоянном давлении. Известно, что если охлаждать воду при нормальном атмосферном давлении, то при достижении 0°С вода начнет замерзать. Проводя аналогичные опыты при других давлениях, придем к кривой ОС, отделяющей область жидкой воды от области льда. Эта кривая -- кривая равновесия твердое состояние -- жидкость, или кривая плавления ,-- показывает те пары значений температуры и давления, при которых лед и жидкая вода находятся в равновесии.

    Двигаясь по горизонтали влево в области пара (в нижнею части диаграммы), аналогичным образом придем к кривой 0В. Это--кривая равновесия твердое состояние--пар, или кривая сублимации . Ей отвечают те пары значений температуры к давления, при которых в равновесии находятся лед и водяной пар.

    Все три кривые пересекаются в точке О. Координаты этой точки--это единственная пара значений температуры и давления,. при которых в равновесии могут находиться все три фазы: лед, жидкая вода и пар. Она носит название тройной точки .

    Кривая плавления исследована до весьма высоких давлений, В этой области обнаружено несколько модификаций льда (на диаграмме не показаны).

    Справа кривая кипения оканчивается в критической точке . При температуре, отвечающей этой точке,--критической температуре -- величины, характеризующие физические свойства жидкости и пара, становятся одинаковыми, так что различие между жидким и парообразным состоянием исчезает.

    Существование критической температуры установил в 1860 г. Д. И. Менделеев, изучая свойства жидкостей. Он показал, что при температурах, лежащих выше критической, вещество не может находиться в жидком состоянии. В 1869 г. Эндрьюс, изучая свойства газов, пришел к аналогичному выводу. вода пресный фильтрование химический

    Критические температура и давление для различных веществ различны. Так, для водорода = --239,9 °С, = 1,30 МПа, для хлора =144°С, =7,71 МПа, для воды = 374,2 °С, = 22,12 МПа.

    Одной из особенностей воды, отличающих ее от других веществ, является понижение температуры плавления льда с ростом давления. Это обстоятельство отражается на диаграмме. Кривая плавления ОС на диаграмме состояния воды идет вверх влево, тогда как почти для всех других веществ она идет вверх вправо.

    Превращения, происходящие с водой при атмосферном давлении, отражаются на диаграмме точками или отрезками, расположенными на горизонтали, отвечающей 101,3 кПа (760 мм рт. ст.). Так, плавление льда или кристаллизация воды отвечает точке D , кипение воды--точке Е, нагревание или охлаждение воды -- отрезку DE и т. п.

    Диаграммы состояния изучены для ряда веществ, имеющих научное или практическое значение. В принципе они подобны рассмотренной диаграмме состояния воды. Однако на диаграммах состояния различных веществ могут быть особенности. Так, известны вещества, тройная точка которых лежит при давлении, превышающем атмосферное. В этом случае нагревание кристаллов при атмосферном давлении приводит не к плавлению этого вещества, а к его сублимации - превращению твердой фазы непосредственно в газообразную.

    • 4. Химические свойства воды. Молекулы воды отличаются большой устойчивостью к нагреванию. Однако при температурах выше 1000 °С водяной пар начинает разлагаться на водород и кислород:
    • 2НО 2Н+О

    Процесс разложения вещества в результате его нагревания называется термической диссоциацией. Термическая диссоциация воды протекает с поглощением теплоты. Поэтому, согласно принципу Ле Шателье, чем выше температура, тем в большей степени разлагается вода. Однако даже при 2000 °С степень термической диссоциации воды не превышает 2%, т.е. равновесие между газообразной водой и продуктами ее диссоциации -- водородом и кислородом -- все еще остается сдвинутым в сторону воды. При охлаждении же ниже 1000 °С равновесие практически полностью сдвигается в этом направлении.

    Вода -- весьма реакционноспособное вещество. Оксиды многих металлов и неметаллов соединяются с водой, образуя основания и кислоты; некоторые соли образуют с водой кристаллогидраты; наиболее активные металлы взаимодействуют с водой с выделением водорода.

    Вода обладает также каталитической способностью. В отсутствие следов влаги практически не протекают некоторые обычные реакции; например, хлор не взаимодействует с металлами, фтороводород не разъедает стекло, натрий не окисляется в атмосферы воздуха.

    Вода способна соединяться с рядом веществ, находящихся при обычных условиях в газообразном состоянии, образуя при этом так: называемые гидраты газов. Примерами могут служить соединения Хе6НО, CI8HO, СН6НО, СН17НО, которые выпадают в виде кристаллов при температурах от 0 до 24 °С (обычно при повышенном давлении соответствующего газа). Подобные соединения возникают в результате заполнения молекулами газа (“гостя”) межмолекулярных полостей, имеющихся в структуре воды (“хозяина”); они называются соединениями включения или клатратами .

    В клатратных соединениях между молекулами “гостя” и “хозяина” образуются лишь слабые межмолекулярные связи; включенная молекула не может покинуть своего места в полости кристалла преимущественно из-за пространственных затруднений Поэтому клатраты -- неустойчивые соединения, которые могут существовать лишь при сравнительно низких температурах.

    Клатраты используют для разделения углеводородов и благородных газов. В последнее время образование и разрушение клатратов газов (пропана и некоторых других) успешно применяется для обессоливания воды. Нагнетая в соленую воду при повышенном давлении соответствующий газ, получают льдоподобные кристаллы клатратов, а соли остаются в растворе. Похожую на снег массу кристаллов отделяют от маточного раствора и промывают, Затем при некотором повышении температуры или уменьшении давления клатраты разлагаются, образуя пресную воду и исходный газ, который вновь используется для получения клатрата. Высокая экономичность и сравнительно мягкие условия осуществления этого процесса делают его перспективным в качестве промышленного метода опреснения морской воды.

    5. Тяжелая вода . При электролизе обычной воды, содержащей наряду с молекулами НО также незначительное количество молекул DO, образованных тяжелым изотопом водорода, разложению подвергаются преимущественно молекулы НО. Поэтому при длительном электролизе воды остаток постепенно обогащается молекулами DO. Из такого остатка после многократного повторения электролиза в 1933 г. впервые удалось выделить небольшое количество воды состоящей почти на 100% из молекул DО и получившей название тяжелой воды.

    По своим свойствам тяжелая вода заметно отличается от обычной воды (таблица). Реакции с тяжелой водой протекают медленнее, чем с обычной. Тяжелую воду применяют в качестве замедлителя нейтронов в ядерных реакторах.

    Библиография

    Д.Э., Техника и производство. М., 1972г

    Хомченко Г.П. , Химия для поступающих в ВУЗы. М., 1995г.

    Прокофьев М.А., Энциклопедический словарь юного химика. М., 1982г.

    Глинка Н.Л., Общая химия. Ленинград, 1984г.

    Ахметов Н.С., Неорганическая химия. Москва, 1992г.

    Какими свойствами обладает вода?

    Обычно среди свойств воды называются такие, как прозрачная, бесцветная, текучая, без запаха, принимает любую форму, в которую её налить, растворяет вещества, может замерзать, может испаряться, вода расширяется и сжимается.

    Почему вода необходима для всех живых организмов?

    Вода входит в состав организмов, только в водной среде протекают многие химические реакции, она участвует в терморегуляции.

    В каких трех состояниях находится вода в природе?

    В природе вода находится в твердом, жидком и газообразном состоянии.

    Рассмотрите рисунок. Расскажите, какое значение имеет вода, приведите конкретные примеры.

    Вода – обязательное условие существования живых организмов. Она входит в состав самих живых организмов. Для многих – вода среда обитания. Это касается рыб, земноводных, многих одноклеточных. Вода участвует в формировании климата. К примеру, осадки связаны с круговоротом воды в природе. Вода участвует в формировании рельефа. С работой текучих вод рек связано образование речных долин. Люди используют воду в своей хозяйственной деятельности. С водой связано образование некоторых горных пород. Торф, к примеру, образуется в условиях переувлажнения.

    Вопросы и задания

    1. Из каких частей состоит гидросфера на Земле? Где сосредоточена основная часть воды?

    Гидросфера состоит из вод Мирового океана, ледников, подземных вод, озер, болот и рек. Основная часть воды сосредоточена в морях и океанах.

    2. Почему при обилии воды на Земле существует проблема ее бережного использования?

    Во-первых для использования человеку в бытовых целях и для хозяйственной деятельности нужна чистая пресная вода, которой не так уж и много. Во-вторых, проблема бережного использования связана с неравномерностью распространения запасов воды. В-третьих, из-за активной хозяйственной деятельности человека воды планеты подвергаются различного вида загрязнениям.

    3. Докажите, что гидросфера - сплошная и непрерывная оболочка Земли? Чем обеспечивается единство гидросферы?

    Единство гидросферы поддерживается круговоротом воды в природе. Под воздействием солнечной энергии жидкая вода и лед испаряются, превращаясь в водяной пар. В атмосфере из водяного пара образуются облака. Ветры переносят облака над океанами и с океанов на сушу. Благодаря действию силы тяжести из облаков выпадают осадки, которые питают реки, озера, ледники, увлажняют почву. Под ее влиянием вода течет с более высоких мест в более низкие, возвращаясь реками и ручьями обратно в океан. Часть выпавшей на поверхность влаги просачивается вглубь земли, пополняя подземные воды.

    4. Благодаря каким процессам совершается круговорот воды в природе? Каково его значение?

    Круговорот воды в природе происходит благодаря солнечному теплу и силе тяжести. Происходят процессы испарения и конденсации воды.

    5. Как вы думаете, почему французский писатель Антуан де Сент-Экзюпери написал о воде: «Нельзя сказать, что ты необходима для жизни: ты сама жизнь».

    Считается, что сама жизнь зародилась в воде. В состав живых организмов входит вода. Она является универсальным растворителем. Вода – среда обитания многих организмов. Она влияет на климат и рельеф. Таким образом, вода – это и сами организмы и их среда обитания.

    Вода на Земле может существовать в трёх основных состояниях - жидком, газообразном и твёрдом и приобретать различные формы, которые могут одновременно соседствовать друг с другом. Водяной пар и облака в небе, морская вода и айсберги, горные ледники и горные реки, водоносные слои в земле. Вода способна растворять в себе много веществ, приобретая тот или иной вкус. Из-за важности воды, «как источника жизни», её нередко подразделяют на типы по различным принципам.

    Итак, вода бывает морская, пресная, речная, озерная, колодезная, водопроводная, сырая, кипяченая, родниковая, дождевая, талая, болотная, минеральная, горячая, теплая, холодная, приятная, бодрящая, газированная (с сиропом или без). Наконец, просто вкусная или невкусная!

    Художник воду описывает такой, какой ее видит, в красках: голубая вода горных озер, зеленоватая вода прудов и болот, свинцово-серые волны моря… Поэт и вовсе сравнивает воду с живым существом, обладающим характером. «Вода благоволила литься» - эти слова принадлежат поэту Леониду Мартынову. Сколько в одной строчке восхищения водой!

    Как с научной и практической точки зрения можно классифицировать природную воду?

    Прежде всего, по содержанию солей. Cуществует морская вода (соленая) и вода пресная. Соленость определяется в граммах солей на литр воды и составляет для пресной воды до 1 г/л, для воды солоноватой - от 1 до 24,7 г/л и для соленой - более 24,7 г/л. Но и морская вода по степени солености бывает разная. Вода Черного моря гораздо солонее воды моря Балтийского. А самой соленой считается вода Мертвого моря. Соленость воды зависит от количества рек, впадающих в морской бассейн, от степени его соединения с Мировым океаном и от климата данной местности (режима испарения). Вода некоторых соленых озер, в том числе находящихся на юге России, а также на территории бывшего СССР (Казахстан, Туркмения), достигает такой концентрации, что больше напоминает соляной раствор.

    Вода отличается также по нахождению в Природе и происхождению. Воды бывают поверхностные (реки, озера, моря и пр.) и подземные, в том числе грунтовые, артезианские.

    Воду различают и по степени очистки: природная вода, водопроводная, кипяченая, дистиллированная (полученная из охлажденных паров).

    Кроме того, вода может быть даже ископаемой (заключенная внутри горных пород и минералов, образовавшихся миллионы лет назад). Она и сама может быть полезным ископаемым! Об этом вам скажут геологи. А вот химики обязательно добавят, что кроме обычной, легкой, воды в Природе существует и тяжелая вода (тритиевая и дейтериевая), которую называют радиоактивной.

    Известно, что в природе вода может находиться в трех различных состояниях, таких как: газообразное, жидкое или твердое.

    Облака, снег и дождь представляют собой различные состояния воды. Облако состоит из множества капелек воды или кристалликов льда, снежинка-это мельчайшие кристаллики льда, а дождь-это всего лишь жидкая вода.

    Вода, находящаяся в газообразном состоянии, называется водяным паром. Когда говорят о количестве влажности в воздухе, обычно подразумевают количество водяных паров. Если воздух описывается как «влажный», это означает, что в воздухе содержится большое количество водяных паров.

    Лед – твердое состояние воды. Толстый слой льда имеет голубоватый цвет, что связано с особенностями преломления им света. Сжимаемость льда очень низка. Лед при нормальном давлении существует только при температуре 0° С или ниже и обладает меньшей плотностью, чем холодная вода. Именно поэтому айсберги плавают в воде. При этом, поскольку отношение плотностей льда и воды при 0° С постоянно, лед всегда выступает из воды на определенную часть, а именно на 1/5 своего объема.

    Для того, чтобы доказать, что вода переходит из одного состояния в другое я провёл несколько экспериментов.

    Эксперимент 1.

    Переход воды из жидкого состояния в твердое. (Приложение 1)

    Эксперимент 2.

    Переход воды из жидкого состояния в газообразное, из газообразного в жидкое и из твердого в жидкое. (Приложение 1).

    Переход вещества из газообразного состояния в жидкое или твёрдое вследствие его охлаждения или сжатия называется конденсацией.

    Также происходит и в природе. С поверхности океанов, морей, рек и суши вода превращается в пар и поднимается в вверх. Там он охлаждается и превращается в капельки воды, из которых образуются облака.

    Из облаков вода выпадает на землю и пополняет реки, а реки несут её в океан.

    Это называется круговорот воды в природе.

    ⇐ Предыдущая12345Следующая ⇒

    Не нашли то, что искали? Воспользуйтесь поиском:

    Читайте также:

    Состояние воды в природе

    Вода — одно из самых распространенных на Земле соединений. Молекулы воды обнаружены в межзвездном пространстве. Вода входит в состав комет, большинства планет Солнечной системы и их спутников. Количество воды на поверхности земли оценивается в 1,39 ?

    1018т. Общий объем воды на Земле составляет около 1 500 000 000 км 3 . Если эту воду равномерно распределить по поверхности Земли, то толщина ее слоя составила бы почти 4 км.

    Вода входит в состав многих минералов и горных пород, присутствует в почве и во всех организмах. Так, например, тело взрослого человека на 65% состоит из воды. Вода входит в состав всех его органов и тканей: в сердце, легких, почках её около 80%, в крови — 83%, в костях — 30%, в зубной эмали — 0,3%, в биологических жидкостях организма (слюне, желудочном соке, моче и т.д.) — 95-99%.

    Тело рыб содержит 80% воды, водорослей — 90%. Подсчитано, что содержание воды в тканях живых организмов примерно в шесть раз превышает ее количество во всех реках земного шара.

    Известно, что в природе вода может находиться в трех различных состояниях, таких как: твердое, жидкое или газообразное.

    Облака, снег и дождь представляют собой различные состояния воды. Облако состоит из множества капелек воды или кристалликов льда, снежинка — это совокупность мельчайших кристалликов льда, а дождь — всего лишь жидкая вода.

    Вода, находящаяся в газообразном состоянии, называется водяным паром. Когда говорят о количестве влажности в воздухе, обычно подразумевают количество водяных паров. Если воздух описывается как "влажный", это означает, что в воздухе содержится большое количество водяных паров.

    Лед — твердое состояние воды. Толстый слой льда имеет голубоватый цвет, что связано с особенностями преломления им света. Сжимаемость льда очень низка. Лед при нормальном давлении существует только при температуре 0° С или ниже и обладает меньшей плотностью, чем холодная вода. Именно поэтому айсберги плавают в воде. При этом, поскольку отношение плотностей льда и воды при 0° С постоянно, лед всегда выступает из воды на определенную часть, а именно на 1/5 своего объема.

    Лишь недавно, в конце второго тысячелетия, было обнаружено еще одно, четвертое состояние воды - информационное. В поисках ответов на многочисленные вопросы, хоть сколь-нибудь приблизившие бы к пониманию непредсказуемого поведения воды, ученым вдруг стало остро очевидно: вода, словно живое существо, обладает памятью. Она воспринимает и запоминает любое воздействие, как будто понимая все, что происходит в пространстве.

    В ходе опытов со структурой жидкости удалось выяснить, что памятью воды можно управлять. Суть сводится к следующему: молекулы того или иного вещества, растворяясь в воде, как бы пронумеровывают и программируют расположение ее структурных элементов. Если записать объемное распределение взаимных ориентацией граней вокруг молекулы вещества, то фактически будет произведена запись вполне определенного состояния воды, отвечающего за то или иное ее свойство (например, горький или сладкий вкус и т. д.). Нетрудно представить, какие громадные возможности направленного задания желаемых свойств воды это открывает.

    Сверхкритическую воду систематически исследуют с начала прошлого века. Однако сегодня эти работы привлекательны не только с теоретической точки зрения. Есть надежда, что самый распространённый, дешёвый, безопасный и экологически чистый растворитель займет свою уникальную нишу в химической промышленности.

    Сверхкритические состояния первым начал изучать Каньяр де ля Тур в 1822 году. Если любую кипящую жидкость (когда существует равновесие между жидкостью и паром) продолжать нагревать и увеличивать давление, то в какой-то момент плотности жидкости и пара становятся одинаковыми, а граница раздела между этими фазами исчезает. В этой критической точке вещество переходит в промежуточное состояние - становится не газом и не жидкостью. При температуре выше критической точки уже двух фаз не получится, хотя если этот однородный флюид сжимать, то его плотность будет меняться от газоподобного к жидкоподобному. При меньших температурах вода находится в докритическом состоянии, а при изменении давления её плотность меняется скачком: жидкость переходит в пар. Выше - в сверхкритическом, вещество однородно, а плотность меняется непрерывно.

    Уже накоплено много экспериментальных данных по сверхкритическому состоянию воды.

    Все эти данные подтверждают, что при повышении температуры и давления меняются: её диэлектрическая проницаемость, электропроводность, ионное произведение, структура водородных связей.

    Из всех жидкостей вода, наверное, претерпевает самые сильные изменения, переходя в сверхкритическое состояние. Если при нормальном давлении и температуре вода - полярный растворитель, то в сверхкритической воде растворяются почти все органические вещества. Растворимость неорганических веществ также меняется. Даже небольшое отклонение температуры и давления вблизи критической точки изменяет все физико-химические характеристики воды, поэтому при малейших флуктуациях давления и температуры в такой воде могут полностью растворяться или, наоборот, осаждаться оксиды и соли. Собственно, на этом основана технология гидротермального выращивания кристаллов, которой больше полувека.

    В сверхкритическом состоянии вода (скH2O) неограниченно смешивается с кислородом, водородом и углеводородами, облегчая их взаимодействие между собой - в ней очень быстро протекают все реакции окисления. Одно из особенно интересных применений такой воды - эффективное уничтожение боевых отравляющих веществ. В смеси с другими веществами скH2O можно использовать не только для окисления, но и в реакциях гидролиза, гидратации, образования и расщепления углерод-углеродных связей, гидрирования и других.

    До- и сверхкритическая вода - это нетоксичный растворитель, свойствами которого можно управлять, подстраивая их под конкретную каталитическую реакцию. В процессах со сверхкритическим флюидом нет проблем с диффузией на границе газ-жидкость (ведь это не газ и не жидкость), а значит, легче регулировать скорость такой реакции.

    Кроме перечисленных состояний воды открыто новое, в котором она не замерзает даже при температуре, близкой к абсолютному нулю, а также обладает иными необычными свойствами.

    Группа американских ученых из Аргоннской национальной лаборатории под руководством Александра Колесникова открыла новое состояние воды, получившее название «нанотрубочная вода» (nanotube water). Несмотря на то что в новом состоянии молекула воды также состоит из атома кислорода и двух атомов водорода, она не замерзает даже при температуре 8 градусов Кельвина.

    Поведение воды в сверхмалых объемах, стенки которых не смачиваются водой, очень интересует специалистов в различных областях – от геологов до разработчиков новых материалов. Американские ученые решили исследовать свойства воды, помещенной в «сосуд» из углеродной нанотрубки. «Я с удивлением узнал, — рассказал г-н Колесников, — что никто до сих пор не пытался исследовать поведение воды в нанотрубках. Имеется большое количество расчетов, однако они усложняются еще и тем фактом, что вода крайне сложна для моделирования – в отличие от экспериментального исследования».

    Для изучения поведения воды в таких «экстремальных» условиях ученые наполнили водой углеродные нанотрубки размером 1,4 нм в поперечнике и длиной 10 тыс. нм. Для этого они подвергали их воздействию водяного пара на протяжении нескольких часов, после чего изучили структуру атомов внутри нанотрубок с помощью потока нейтронов. «В столь тесном одноразмерном сосуде мы ожидали увидеть что-то необычное, но не настолько, — сказал г-н Колесников.

    — Обнаружилось нечто поистине странное».

    Оказалось, что вода в нанотрубках находится в новом состоянии, не похожем ни на жидкое, ни на газообразное агрегатные состояния. Выяснилось, в частности, что среднее количество водородных связей, связывающих молекулу воды с соседними (так называемое координатное число) сократилось с 3,8 до 1,86. Вследствие этого повысилась подвижность молекул. «Новая вода» не замерзала даже при температуре, всего на восемь градусов отличающейся от абсолютного нуля.

    Ученые продолжают оказавшиеся столь плодотворными исследования. На очереди разработка более корректной математической модели воды с использованием методов параллельных вычислений, изучение свойств воды в нанотрубках меньшего диаметра – например, сравнимого с размером протеинов клеточной мембраны, а также изучение термодинамических свойств "нанотрубочной воды".



    Поделиться