Уравнение нормали к поверхности параллельной вектору. Касательная плоскость и нормаль к поверхности

1°. Уравнения касательной плоскости и нормали для случая явного задания поверхности.

Рассмотрим одно из геометрических приложений частных производных функции двух переменных. Пусть функция z = f (x ; y ) дифференцируема в точке (x 0 ; у 0) некоторой области D Î R 2 . Рассечем поверхность S , изображающую функцию z, плоскостями х = х 0 и у = у 0 (рис. 11).

Плоскость х = x 0 пересекает поверхность S по некоторой линии z 0 (y ), уравнение которой получается подстановкой в выражение исходной функции z = =f (x ; y ) вместо х числа x 0 . Точка M 0 (x 0 ; y 0, f (x 0 ; y 0)) принадлежит кривой z 0 (y ). В силу дифференцируемой функции z в точке М 0 функция z 0 (y ) также является дифференцируемой в точке у =у 0 . Следовательно, в этой точке в плоскости х = х 0 к кривой z 0 (y ) может быть проведена касательная l 1 .

Проводя аналогичные рассуждения для сечения у = у 0 , построим касательную l 2 к кривой z 0 (x ) в точке х = x 0 - Прямые 1 1 и 1 2 определяют плоскость , которая называется касательной плоскостью к поверхности S в точке М 0 .

Составим ее уравнение. Так как плоскость проходит через точку Mo (x 0 ; y 0 ; z 0), то ее уравнение может быть записано в виде

А(х - хо) + В(у - уо) + C (z - zo ) = 0,

которое можно переписать так:

z -z 0 = A 1 (x – х 0) + B 1 (y – у 0) (1)

(разделив уравнение на -С и обозначив ).

Найдем A 1 и B 1 .

Уравнения касательных 1 1 и 1 2 имеют вид

соответственно.

Касательная l 1 лежит в плоскости a , следовательно, координаты всех точек l 1 удовлетворяют уравнению (1). Этот факт можно записать в виде системы

Разрешая эту систему относительно B 1 , получим, что .Проводя аналогичные рассуждения для касательной l 3 , легко установить, что .

Подставив значения А 1 и B 1 в уравнение (1), получаем искомое уравнение касательной плоскости:

Прямая, проходящая через точку М 0 и перпендикулярная касательной плоскости, построенной в этой точке поверхности, называется еенормалью.

Используя условие перпендикулярности прямой и плоскости, легко получить канонические уравнения нормали:

Замечание. Формулы касательной плоскости и нормали к поверхности получены для обыкновенных, т. е. не особых, точек поверхности. Точка М 0 поверхности называется особой, если в этой точке все частные производные равны нулю или хотя бы одна из них не существует. Такие точки мы не рассматриваем.

Пример. Написать уравнения касательной плоскости и нормали к поверхности в ее точке М(2; -1; 1).

Решение. Найдем частные производные данной функции и их значения в точке М

Отсюда, применяя формулы (2) и (3), будем иметь: z-1=2(х-2)+2(у+1) или 2х+2у-z-1=0 - уравнение касательной плоскости и - уравнения нормали.

2°. Уравнения касательной плоскости и нормали для случая неявного задания поверхности.

Если поверхность S задана уравнением F (x ; у; z ) = 0, то уравнения (2) и (3), с учетом того, что частные производные могут быть найдены как производные неявной функции.

Уравнение нормальной плоскости

1.

4.

Касательная плоскость и нормаль к поверхности

Пусть дана некоторая поверхность, A — фиксированная точка поверхности и B — переменная точка поверхности,

(рис. 1).

Ненулевой вектор

n
называется нормальным вектором к поверхности в точке A , если


lim
B → A
j =
π
2
.

Точка поверхности F (x , y , z) = 0 называется обыкновенной , если в этой точке

  1. частные производные F " x , F " y , F " z непрерывны;
  2. (F " x )2 + (F " y )2 + (F " z )2 ≠ 0 .

При нарушении хотя бы одного из этих условий точка поверхности называется особой точкой поверхности .

Теорема 1. Если M (x 0 , y 0 , z 0 ) — обыкновенная точка поверхности F (x , y , z) = 0 , то вектор

n
= grad F (x 0 , y 0 , z 0 ) = F " x (x 0 , y 0 , z 0 )
i
+ F " y (x 0 , y 0 , z 0 )
j
+ F " z (x 0 , y 0 , z 0 )
k
(1)

является нормальным к этой поверхности в точке M (x 0 , y 0 , z 0 ) .

Доказательство приведено в книге И.М. Петрушко, Л.А. Кузнецова, В.И. Прохоренко, В.Ф. Сафонова ``Курс высшей математики: Интегральное исчисление. Функции нескольких переменных. Дифференциальные уравнения. М.: Изд-во МЭИ, 2002 (стр. 128).

Нормалью к поверхности в некоторой ее точке называется прямая, направляющий вектор которой является нормальным к поверхности в этой точке и которая проходит через эту точку.

Канонические уравнения нормали можно представить в виде

x − x 0
F " x (x 0 , y 0 , z 0 )
=
y − y 0
F " y (x 0 , y 0 , z 0 )
=
z − z 0
F " z (x 0 , y 0 , z 0 )
.
(2)

Касательной плоскостью к поверхности в некоторой точке называется плоскость, которая проходит через эту точку перпендикулярно нормали к поверхности в этой точке.

Из этого определения следует, что уравнение касательной плоскости имеет вид:

(3)

Если точка поверхности является особой, то в этой точке нормальный к поверхности вектор может не существовать, и, следовательно, поверхность может не иметь нормали и касательной плоскости.

Геометрический смысл полного дифференциала функции двух переменных

Пусть функция z = f (x , y) дифференцируема в точке a (x 0 , y 0 ) . Ее графиком является поверхность

f (x , y) − z = 0.

Положим z 0 = f (x 0 , y 0 ) . Тогда точка A (x 0 , y 0 , z 0 ) принадлежит поверхности.

Частные производные функции F (x , y , z) = f (x , y) − z суть

F " x = f " x , F " y = f " y , F " z = − 1

и в точке A (x 0 , y 0 , z 0 )

  1. они непрерывны;
  2. F "2 x + F "2 y + F "2 z = f "2 x + f "2 y + 1 ≠ 0 .

Следовательно, A — обыкновенная точка поверхности F (x , y , z) и в этой точке существует касательная плоскость к поверхности. Согласно (3), уравнение касательной плоскости имеет вид:

f " x (x 0 , y 0 ) (x − x 0 ) + f " y (x 0 , y 0 ) (y − y 0 ) − (z − z 0 ) = 0.

Вертикальное смещение точки на касательной плоскости при переходе из точки a (x 0 , y 0 ) в произвольную точку p (x , y) есть B Q (рис. 2). Соответствующее приращение аппликаты есть

(z − z 0 ) = f " x (x 0 , y 0 ) (x − x 0 ) + f " y (x 0 , y 0 ) (y − y 0 )

Здесь в правой части стоит дифференциалd z функции z = f (x , y) в точке a (x 0 , x 0 ). Следовательно,
d f (x 0 , y 0 ). есть приращение аппликаты точки плоскости касательной к графику функции f (x , y) в точке (x 0 , y 0 , z 0 = f (x 0 , y 0 )).

Из определения дифференциала следует, что расстояние между точкой P на графике функции и точкой Q на касательной плоскости есть бесконечно малая более высокого порядка, чем расстояние от точки p до точки a .

Графиком функции 2-х переменных z = f(x,y) является поверхность, проектирующаяся на плоскость XOY в область определения функции D.
Рассмотрим поверхность σ , заданную уравнением z = f(x,y) , где f(x,y) – дифференцируемая функция, и пусть M 0 (x 0 ,y 0 ,z 0) – фиксированная точка на поверхности σ , т.е. z 0 = f(x 0 ,y 0). Назначение . Онлайн-калькулятор предназначен для нахождения уравнения касательной плоскости и нормали к поверхности . Решение оформляется в формате Word . Если необходимо найти уравнение касательной к кривой (y = f(x)), то необходимо использовать данный сервис .

Правила ввода функций :

Правила ввода функций :

Касательной плоскостью к поверхности σ в её точке М 0 называется плоскость, в которой лежат касательные ко всем кривым, проведённым на поверхности σ через точку М 0 .
Уравнение касательной плоскости к поверхности, заданной уравнением z = f(x,y) , в точке M 0 (x 0 ,y 0 ,z 0) имеет вид:

z – z 0 = f’ x (x 0 ,y 0)(x – x 0) + f’ y (x 0 ,y 0)(y – y 0)


Вектор называется вектором нормали к поверхности σ в точке М 0 . Вектор нормали перпендикулярен касательной плоскости.
Нормалью к поверхности σ в точке М 0 называется прямая, проходящая через эту точку и имеющая направление вектора N.
Канонические уравнения нормали к поверхности, заданной уравнением z = f(x,y) , в точке M 0 (x 0 ,y 0 ,z 0), где z 0 = f(x 0 ,y 0), имеют вид:

Пример №1 . Поверхность задана уравнением x 3 +5y . Найти уравнение касательной плоскости к поверхности в точке M 0 (0;1).
Решение . Запишем уравнения касательной в общем виде: z - z 0 = f" x (x 0 ,y 0 ,z 0)(x - x 0) + f" y (x 0 ,y 0 ,z 0)(y - y 0)
По условию задачи x 0 = 0 , y 0 = 1 , тогда z 0 = 5
Найдем частные производные функции z = x^3+5*y:
f" x (x,y) = (x 3 +5 y)" x = 3 x 2
f" x (x,y) = (x 3 +5 y)" y = 5
В точке М 0 (0,1) значения частных производных:
f" x (0;1) = 0
f" y (0;1) = 5
Пользуясь формулой, получаем уравнение касательной плоскости к поверхности в точке М 0: z - 5 = 0(x - 0) + 5(y - 1) или -5 y+z = 0

Пример №2 . Поверхность задана неявным образом y 2 -1/2*x 3 -8z. Найти уравнение касательной плоскости к поверхности в точке M 0 (1;0;1).
Решение . Находим частные производные функции . Поскольку функция задана в неявном виде, то производные ищем по формуле:

Для нашей функции:

Тогда:

В точке М 0 (1,0,1) значения частных производных:
f" x (1;0;1) = -3 / 16
f" y (1;0;1) = 0
Пользуясь формулой, получаем уравнение касательной плоскости к поверхности в точке М 0: z - 1 = -3 / 16 (x - 1) + 0(y - 0) или 3 / 16 x+z- 19 / 16 = 0

Пример . Поверхность σ задана уравнением z = y/x + xy – 5x 3 . Найти уравнение касательной плоскости и нормали к поверхности σ в точке М 0 (x 0 , y 0 , z 0), принадлежащей ей, если x 0 = –1, y 0 = 2.
Найдем частные производные функции z = f (x , y ) = y/x + xy – 5x 3:
f x ’(x , y ) = (y/x + xy – 5x 3)’ x = – y/x 2 + y – 15x 2 ;
f y ’ (x , y ) = (y/x + xy – 5x 3)’ y = 1/x + x .
Точка М 0 (x 0 , y 0 , z 0) принадлежит поверхности σ , поэтому можно вычислить z 0 , подставив заданные x 0 = –1 и y 0 = 2 в уравнение поверхности:

z = y/x + xy – 5x 3

z 0 = 2/(-1) + (–1) 2 – 5 (–1) 3 = 1.
В точке М 0 (–1, 2, 1) значения частных производных:
f x ’(М 0) = –1/(-1) 2 + 2 – 15(–1) 2 = –15; f y ’(М 0) = 1/(-1) – 1 = –2.
Пользуясь формулой (5) получаем уравнение касательной плоскости к поверхности σ в точке М 0:
z – 1= –15(x + 1) – 2(y – 2) z – 1= –15x – 15 – 2y + 4 15x + 2y + z + 10 = 0.
Пользуясь формулой (6) получаем канонические уравнения нормали к поверхности σ в точке М 0: .
Ответы: уравнение касательной плоскости: 15x + 2y + z + 10 = 0; уравнения нормали: .

Пример №1 . Дана функция z=f(x,y) и две точки А(х 0 , y 0) и В(х 1 ,y 1). Требуется: 1) вычислить значение z 1 функции в точке В; 2) вычислить приближенное значение z 1 функции в точке В исходя из значения z 0 функции в точке А, заменив приращение функции при переходе от точки А к точке В дифференциалом; 3) составить уравнение касательной плоскости к поверхности z = f(x,y) в точке C(x 0 ,y 0 ,z 0).
Решение.
Запишем уравнения касательной в общем виде:
z - z 0 = f" x (x 0 ,y 0 ,z 0)(x - x 0) + f" y (x 0 ,y 0 ,z 0)(y - y 0)
По условию задачи x 0 = 1, y 0 = 2, тогда z 0 = 25
Найдем частные производные функции z = f(x,y)x^2+3*x*y*+y^2:
f" x (x,y) = (x 2 +3 x y +y 2)" x = 2 x+3 y 3
f" x (x,y) = (x 2 +3 x y +y 2)" y = 9 x y 2
В точке М 0 (1,2) значения частных производных:
f" x (1;2) = 26
f" y (1;2) = 36
Пользуясь формулой, получаем уравнение касательной плоскости к поверхности в точке М 0:
z - 25 = 26(x - 1) + 36(y - 2)
или
-26 x-36 y+z+73 = 0

Пример №2 . Написать уравнения касательной плоскости и нормали к эллиптическому параболоиду z = 2x 2 + y 2 в точке (1;-1;3).

Определение 1 : Касательной плоскостью к поверхности в данной точке P (x 0 , y 0 , z 0) называется плоскость, проходящая через точку Р и содержащая в себе все касательные, построенные в точке Р ко всевозможным кривым на этой поверхности, проходящим через точку Р.

Пусть поверхность s задана уравнением F (х , у , z ) = 0 и точка P (x 0 , y 0 , z 0) принадлежит этой поверхности. Выберем на поверхности какую-либо кривую L , проходящую через точку Р .

Пусть х = х (t ), у = у (t ), z = z (t ) - параметрические уравнения линии L .

Предположим, что: 1) функция F (х , у , z ) дифференцируема в точке Р и не все её частные производные в этой точке равны нулю; 2) функции х (t ), у (t ), z (t ) также дифференцируемы.

Поскольку кривая принадлежит поверхности s, то координаты любой точки этой кривой, будучи подставленными в уравнение поверхности, обратят его в тождество. Таким образом, справедливо тождественное равенство: F [x (t ), у (t ), z (t )]= 0.

Продифференцировав это тождество по переменной t , используя цепное правило, получим новое тождественное равенство, справедливое во всех точках кривой, в том числе и в точке P (x 0 , y 0 , z 0):

Пусть точке Р соответствует значение параметра t 0 , то есть x 0 = x (t 0), y 0 = y (t 0), z 0 = z (t 0). Тогда последнее соотношение, вычисленное в точке Р , примет вид

Данная формула представляет собой скалярное произведение двух векторов. Первый из них - постоянный вектор

не зависящий от выбора кривой на поверхности.

Второй вектор - касательный в точке Р к линии L , а значит, зависящий от выбора линии на поверхности, то есть является переменным вектором.

При введённых обозначениях равенство:

перепишем как.

Его смысл таков: скалярное произведение равно нулю, следовательно, векторы и перпендикулярны. Выбирая всевозможные кривые, проходящие через точку Р на поверхности s, мы будем иметь различные касательные векторы, построенные в точке Р к этим линиям; вектор же от этого выбора не зависит и будет перпендикулярен любому из них, то есть все касательные векторы расположены в одной плоскости, которая, по определению, является касательной к поверхности s, а точка Р в этом случае называется точкой касания. Вектор является направляющим вектором нормали к поверхности.

Определение 2: Нормалью к поверхности s в точке Р называется прямая, проходящая через точку Р и перпендикулярная к касательной плоскости, построенной в этой точке.

Мы доказали существование касательной плоскости, а, следовательно, и нормали к поверхности. Запишем их уравнения:

Уравнение касательной плоскости, построенной в точке P (x0, y0, z0) к поверхности s, заданной уравнением F(х, у, z) = 0;

Уравнение нормали, построенной в точке Р к поверхности s.

Пример: Найти уравнение поверхности, образованной вращением параболы:

z 2 = 2p (y +2)

вокруг оси оу, вычислить при условии, что точка М(3, 1, - 3) принадлежит поверхности. Найти уравнения нормали и касательной плоскости к поверхности в точке М.

Решение. Используя правило записи поверхности вращения, получим:

z 2 + x 2 = 2p (y +2) .

Подставив координаты точки М в это уравнение, вычислим значение параметра р: 9 + 9 = 2р(1 + 2) . Записываем окончательный вид поверхности вращения, проходящей через точку М:

z 2 + x 2 = 6 (y +2).

Теперь найдём уравнения нормали и касательной плоскости по формулам, для чего вычислим сначала частные производные функции:

F(x, y) = z 2 + x 2- 6 (y +2):

Тогда уравнение касательной плоскости примет вид 6(х - 3) - 6(y - 1) - 6(z + 3) = 0 или x - y - z - 5 = 0;



Поделиться