Предельная ошибка выборочной средней формула. Конкретная, средняя и предельная ошибки выборки

Расхождение между значениями показателей, полученных по выборке, и соответствующими параметрами генеральной совокупности называют ошибкой репрезентативности. Различают систематические и случайные ошибки выборки.

Случайные ошибки объясняются недостаточно равномерным представлением в выборочной совокупности различных категорий единиц генеральной совокупности.

Систематические ошибки могут быть связаны с нарушением правил отбора или условий реализации выборки.

Так, при обследовании бюджетов домашних хозяйств выборочную совокупность на протяжении более 40 лет строили на основе территориально-отраслевого принципа отбора, что было обусловлено основной целью бюджетного обследования – дать характеристику уровня жизни рабочих, служащих и колхозников. Выборочная совокупность распределялась по регионам и отраслям экономики РСФСР пропорционально общей численности занятых; для создания отраслевой выборки применяли типическую выборку с механическим отбором единиц внутри групп.

Главным критерием отбора была среднемесячная оплата труда. Принцип отбора обеспечивал пропорциональную представительность в выборочной совокупности работающих с различным уровнем заработной платы.

С появлением новых социальных групп (предпринимателей, фермеров, безработных) репрезентативность выборки нарушалась не только в силу различий со структурой генеральной совокупности, но и в связи с систематической ошибкой, которая возникала из-за несовпадения единицы отбора (работник) и единицы наблюдения (домохозяйство). Домохозяйство, имеющее более одного работающего члена семьи, имело и бо́льшую вероятность быть отобранным, чем домохозяйство, в составе которого был один работающий. Семьи, не имеющие занятых в обследуемых отраслях, выпадали из круга отбираемых единиц (домохозяйства пенсионеров, домохозяйства, существующие за счет индивидуальной трудовой деятельности, и т.п.). Оценка точности полученных результатов (границы доверительных интервалов, ошибки выборки) была затруднена, так как при построении выборки не использовались вероятностные модели.

В 1996–1997 гг. был внедрен принципиально новый подход к формированию выборки домашних хозяйств. В качестве основы для ее проведения использовали данные микропереписи населения 1994 г. Генеральную совокупность при отборе составили все типы домашних хозяйств, за исключением коллективных. А выборочную совокупность стали организовывать с учетом представительности состава и типов домашних хозяйств в пределах каждого субъекта РФ.

Измерение ошибок репрезентативности выборочных показателей основано на предположении о случайном характере их распределения при бесконечно большом числе выборок.

Количественную оценку надежности выборочного показателя используют, чтобы составить представление о генеральной характеристике. Это осуществляют либо на основе выборочного показателя с учетом его случайной ошибки, либо на основе выдвижения некоторой гипотезы (о величине средней дисперсии, характере распределения, связи) в отношении свойств генеральной совокупности.

Для проверки гипотезы оценивают согласованность эмпирических данных с гипотетическими.

Величина случайной ошибки репрезентативности зависит:

  • 1) от объема выборки;
  • 2) степени вариации изучаемого признака в генеральной совокупности;
  • 3) принятого способа формирования выборочной совокупности.

Различают среднюю (стандартную) и предельную ошибки выборки.

Средняя ошибка характеризует меру отклонений выборочных показателей от аналогичных показателей генеральной совокупности.

Предельной ошибкой принято считать максимально возможное расхождение выборочной и генеральной характеристик, т.е. максимум ошибки при заданной вероятности ее появления.

По данным выборочной совокупности можно оценить различные показатели (параметры) генеральной совокупности. Наиболее часто используют оценку:

  • – генеральной средней величины изучаемого признака (для многозначного количественного признака);
  • – генеральной доли (для альтернативного признака).

Основным принципом применения выборочного метода является обеспечение равной возможности для всех единиц генеральной совокупности быть отобранными в выборочную совокупность. При таком подходе соблюдается требование случайного, объективного отбора и, следовательно, ошибка выборки определяется прежде всего ее объемом (п ). С увеличением последнего величина средней ошибки уменьшается, характеристики выборочной совокупности приближаются к характеристикам генеральной совокупности.

При одинаковой численности выборочных совокупностей и прочих равных условиях ошибка выборки будет меньше в гой из них, которая отобрана из генеральной совокупности с меньшей вариацией изучаемого признака. Уменьшение вариации признака означает снижение величины дисперсии (– для количественного признака или – для альтернативного признака).

Зависимость величины ошибки выборки от способов формирования выборочной совокупности определяется по формулам средней ошибки выборки (табл. 5.2).

Дополним показатели табл. 5.2 следующими пояснениями.

Выборочная дисперсия несколько меньше генеральной, в математической статистике доказано, что

Таблица 5.2

Формулы расчета средней ошибки выборки мри различных способах отбора

Вид выборки

повторный для

бесповторный для

Собственно

случайная

(простая)

Серийная

(с равновеликими

Типическая (пропорционально объему групп)

Если выборочная совокупность имеет большой объем (т.е. п достаточно велико), то соотношение приближается к единице и выборочная дисперсия практически совпадает с генеральной.

Выборку считают безусловно большой при п > 100 и безусловно малой при п < 30. При оценке результатов малой выборки указанное соотношение выборочной и генеральной дисперсии следует принимать во внимание.

Они могут быть рассчитаны по следующим формулам:

где – средняя i -й серии; – общая средняя по всей выборочной совокупности;

где – доля единиц определенной категории в i -й серии; – доля единиц этой категории во всей выборочной совокупности; r – число отобранных серий.

4. Для определения средней ошибки типической выборки в случае отбора единиц пропорционально численности каждой группы в качестве показателя вариации выступает средняя из внутригрупповых дисперсий (– для количественного признака, для альтернативного признака). По правилу сложения дисперсий величина средней из внутригрупповых дисперсий меньше, чем величина общей дисперсии. Значение средней возможной ошибки типической выборки меньше, чем ошибка простой собственно-случайной выборки.

Часто используют комбинированный отбор: индивидуальный отбор единиц сочетают с групповым, типический отбор – с отбором сериями. При любом способе отбора с определенной вероятностью можно утверждать, что отклонение выборочной средней (или доли) от генеральной средней (или доли) не превысит некоторую величину, которую называют предельной ошибкой выборки.

Соотношение между пределом ошибки выборки (∆), гарантируемым с некоторой вероятностью F(t), и средней ошибкой выборки имеет вид: или , где t – коэффициент доверия, определяемый в зависимости от уровня вероятности F(t).

Значения функции F(t) и t определяются на основе специально составленных математических таблиц. Приведем некоторые из них, применяемые наиболее часто:

т

Таким образом, предельная ошибка выборки отвечает на вопрос о точности выборки с определенной вероятностью, величина которой зависит от значения коэффициента доверия t. Так, при t = 1 вероятность F(t ) отклонения выборочных характеристик от генеральных на величину однократной средней ошибки равна 0,683. Следовательно, в среднем из каждой 1000 выборок 683 дадут обобщающие показатели (среднюю, долю), которые будут отличаться от генеральных не более чем на величину однократной средней ошибки. При t = 2 вероятность F(t) равна 0,954, это означает, что из каждой 1000 выборок 954 дадут обобщающие показатели, которые будут отличаться от генеральных не более чем на двукратную среднюю ошибку выборки, и т.д.

Наряду с абсолютной величиной предельной ошибки выборки рассчитывают и относительную ошибку, которая определяется как процентное отношение предельной ошибки выборки к соответствующей характеристике выборочной совокупности:

На практике принято задавать величину ∆, как правило, в пределах 10% предполагаемого среднего уровня признака.

Расчет средней и предельной ошибок выборки позволяет определить пределы, в которых будут находиться характеристики генеральной совокупности:

Пределы, в которых с данной степенью вероятности будет заключена неизвестная величина изучаемого показателя в генеральной совокупности, называют доверительным интервалом, а вероятность F(t) доверительной вероятностью. Чем выше значение ∆, тем больше величина доверительного интервала и, следовательно, ниже точность оценки.

Рассмотрим следующий пример. Для определения среднего размера вклада в банке методом повторной случайной выборки было отобрано 200 валютных счетов вкладчиков. В результате установили, что средний размер вклада – 60 тыс. руб., дисперсия составила 32. При этом 40 счетов оказались до востребования. Необходимо с вероятностью 0,954 определить пределы, в которых находятся средний размер вклада на валютных счетах в банке и доля счетов до востребования.

Рассчитаем среднюю ошибку выборочной средней по формуле для повторного отбора

Предельная ошибка выборочной средней с вероятностью 0,954 составит

Следовательно, средний размер вклада на валютных счетах в банке находится в пределах тыс. руб.:

С вероятностью 0,954 можно утверждать, что средний размер вклада на валютных счетах в банке составляет от 59 200 до 60 800 руб.

Определим долю вкладов до востребования в выборочной совокупности:

Средняя ошибка выборочной доли

Предельная ошибка доли с вероятностью 0,954 составит

Таким образом, доля счетов до востребования в генеральной совокупности находится в пределах w :

С вероятностью 0,954 можно утверждать, что доля счетов до востребования в общем числе валютных счетов в банке составляет от 14,4 до 25,6%.

При конкретных исследованиях важно установить оптимальное соотношение между мерой надежности полученных результатов и величиной допустимой ошибки выборки. В связи с этим при организации выборочного наблюдения возникает вопрос, связанный с определением объема выборки, необходимого для получения требуемой точности результатов с заданной вероятностью. Расчет необходимого объема выборки проводится на основе формул предельной ошибки выборки в соответствии с видом и способом отбора (табл. 5.3).

Таблица 5.3

Формулы расчета численности выборки при собственно-случайном способе отбора

Продолжим пример, в котором представлены результаты выборочного обследования лицевых счетов вкладчиков банка.

Требуется установить, сколько необходимо обследовать счетов, чтобы с вероятностью 0,977 ошибка при определении среднего размера вклада не превысила 1,5 тыс. руб. Выразим из формулы предельной ошибки выборки для повторного отбора показатель численности выборки:

При определении необходимого объема выборки по приведенным формулам возникает трудность в нахождении значений σ2 и да, так как эти величины можно получить только после проведения выборочного обследования. В связи с этим вместо фактических значений данных показателей подставляют приближенные, которые могли быть определены на основе каких-либо пробных выборочных наблюдений или из аналитических предыдущих обследований.

В тех случаях, когда статистик знает среднее значение изучаемых признаков (например, из инструкций, законодательных актов и т.п.) или пределы, в которых этот признак варьируется, можно применить следующий расчет по приближенным формулам:

а произведение w(1 – w) заменить значением 0,25 (w = 0,5).

Чтобы получить более точный результат, принимают максимально возможное значение этих показателей. Если распределение признака в генеральной совокупности подчиняется нормальному закону, то размах вариации примерно равен 6σ (крайние значения отстоят в ту и другую сторону от средней на расстоянии 3σ). Отсюда , но если распределение заведомо асимметрично, то .

При любом виде выборки ее объем начинают рассчитывать по формуле повторного отбора

Если в результате расчета доля отбора (n ) превысит 5%, то проводят расчет по формуле бесповторного отбора.

Для типической выборки необходимо общий объем выборочной совокупности разделить между выделенными типами единиц. Расчет числа наблюдений из каждой группы зависит от названных ранее организационных форм типической выборки.

При типическом отборе единиц непропорционально численности групп общее число отбираемых единиц делят на число групп, полученная величина дает численность отбора из каждой типической группы:

где k – число выделенных типических групп.

При отборе единиц пропорционально численности типических групп число наблюдений по каждой группе определяют по формуле

где – объем выборки из i -й группы; – объем i -й группы.

При отборе с учетом вариации признака процент выборки из каждой группы должен быть пропорционален среднему квадратическому отклонению в этой группе (). Расчет численности () производят по формулам

При серийном отборе необходимую численность отбираемых серий определяют так же, как и при собственно-случайном отборе:

Повторный отбор

Бесповторный отбор

При этом дисперсии и ошибки выборки могут быть рассчитаны для средней величины или доли признака.

При использовании выборочного наблюдения характеристика его результатов возможна на основе сопоставления полученных пределов ошибок выборочных показателей с величиной допустимой погрешности.

В связи с этим возникает задача определения вероятности того, что ошибка выборки не превысит допустимой погрешности. Решение этой задачи сводится к расчету на основе формулы предельной ошибки выборки величины t.

Продолжая рассмотрение примера выборочного обследования лицевых счетов клиентов банка, найдем вероятность, с которой можно утверждать, что ошибка при определении среднего размера вклада не превысит 785 руб.:

соответствующая доверительная вероятность составит 0,95.

В настоящее время практика выборочного наблюдения включает статистические наблюдения, осуществляемые:

  • – органами Росстата;
  • – другими министерствами и ведомствами (например, мониторинг предприятий в системе Банка России).

Известное обобщение опыта по организации выборочных обследований малых предприятий, населения и домашних хозяйств представлено в Методологических положениях по статистике. В них дано более широкое понятие выборочного наблюдения, чем это рассмотрено выше (табл. 5.4).

В статистической практике используют все четыре типа выборок, представленных в табл. 5.4. Однако обычно отдают предпочтение описанным выше вероятностным (случайным) выборкам, являющимся наиболее объективными, так как по ним можно оценить точность получаемых результатов по данным самой выборки.

Таблица 5.4

Типы выборок

В выборках квазислучайного типа предполагается наличие вероятностного отбора на том основании, что специалист, рассматривающий выборку, считает его допустимым. Примером использования квазислучайной выборки в статистической практике является "Выборочное обследование малых предприятий по изучению социальных процессов в малом предпринимательстве", проведенное в 1996 г. в некоторых регионах России. Единицы наблюдения (малые предприятия) отбирались экспертно с учетом представительства отраслей экономики из уже сформированной выборки обследования финансово-хозяйственной деятельности малых предприятий (форма "Сведения об основных показателях финансово-хозяйственной деятельности малого предприятия"). При обобщении выборочных данных предполагалось, что выборочная совокупность сформирована методом простого случайного отбора.

Прямое использование суждения эксперта является наиболее общим методом намеренного включения единиц в выборку. Примером такого способа отбора является монографический метод, предполагающий получение информации только от одной единицы наблюдения, являющейся типичной, по мнению организатора обследования – эксперта.

Выборки, сформированные на основе направленного отбора, реализуются с помощью объективной процедуры, но без использования вероятностного механизма. Широко известен метод основного массива, при котором в выборку включают наиболее крупные (существенные) единицы наблюдения, обеспечивающие основной вклад в показатель, например суммарное значение признака, представляющего основную цель обследования.

В статистической практике часто применяют комбинированный метод статистического наблюдения. Сочетание сплошного и выборочного методов наблюдения имеет два аспекта:

  • чередование во времени;
  • одновременное их использование (часть совокупности наблюдают на сплошной основе, а часть – выборочно).

Чередование периодических выборочных со сравнительно редкими сплошными обследованиями или переписями необходимо для уточнения состава исследуемой совокупности. В дальнейшем эту информацию используют как статистическую основу выборочного наблюдения. Примерами могут служить переписи населения и выборочные обследования домашних хозяйств в промежутках времени между их проведениями.

В данном случае требуется решать следующие задачи:

  • – определение состава признаков сплошного наблюдения, обеспечивающих организацию выборки;
  • – обоснование периодов чередования, т.е. когда сплошные данные теряют актуальность и нужны затраты на их обновление.

Одновременное использование в рамках одного обследования сплошного и выборочного наблюдений обусловлено неоднородностью встречающихся в статистической практике совокупностей. В особенности это справедливо для обследований экономической деятельности совокупности предприятий, для которой характерны скошенные распределения изучаемых признаков, когда некоторое число единиц имеет характеристики, сильно отличающиеся от основной массы значений. В этом случае такие единицы наблюдают на сплошной основе, а другую часть совокупности – выборочно.

При данной организации наблюдений основными задачами выступают:

  • – установление их оптимальной пропорции;
  • – разработка способов оценки точности результатов.

Типичным примером, иллюстрирующим данный аспект применения комбинированного метода, является общий принцип проведения обследований совокупности предприятий, в соответствии с которым обследования совокупности крупных и средних предприятий проводят преимущественно сплошным методом, а малых – выборочным.

Дальнейшее развитие методологии выборочного наблюдения осуществляют как в сочетании с организацией сплошного наблюдения, так и через организацию специальных обследований, проведение которых диктуется необходимостью получения дополнительной информации для решения конкретных задач. Так, организация обследований в области условий и уровня жизни населения предусмотрена в двух аспектах:

  • – обязательные компоненты;
  • – дополнительные модули в рамках комплексной системы показателей.

Обязательными компонентами могут стать ежегодные исследования доходов, расходов и потребления (аналог обследования бюджетов домашних хозяйств), включающие также базовые показатели условий жизни населения. Ежегодно по специальному плану обязательные компоненты должны дополняться единовременными обследованиями (модулями) условий жизни населения, направленными на углубленное изучение какой-либо выбранной социальной темы из их общего числа (например, активы домашних хозяйств, здоровье, питание, образование, условия труда, жилищные условия, досуг, социальная мобильность, безопасность и др.) с различной периодичностью, определяемой потребностью в показателях и ресурсными возможностями.

Как известно, в статистике существует два способа наблюдения массовых явлений в зависимости от полноты охвата объекта: сплошное и несплошное. Разновидностью несплошного наблюдения является выборочное наблюдение.

Под выборочным наблюдением понимается несплошное наблюдение, при котором статистическому обследованию (наблюдению) подвергаются единицы изучаемой совокупности, отобранные случайным образом.

Выборочное наблюдение ставит перед собой задачу – по обследуемой части дать характеристику всей совокупности единиц при условии соблюдения всех правил и принципов проведения статистического наблюдения и научно организованной работы по отбору единиц.

Совокупность отобранных для обследования единиц в статистике принято называть выборочной совокупностью , а совокупность единиц, из которых производится отбор, называют генеральной совокупностью . Основные характеристики генеральной и выборочной совокупности представлены в таблице 1.

Таблица 1 - Основные характеристики генеральной и выборочной совокупности
Показатель Обозначение или формула
Генеральная совокупность Выборочная совокупность
Число единиц N n
Число единиц, обладающих каким-либо признаком M m
Доля единиц, обладающих этим признаком p = M/N ω = m/n
Доля единиц, не обладающих этим признаком q = 1 - p 1 - ω
Средняя величина признака
Дисперсия признака
Дисперсия альтернативного признака (дисперсия доли) pq ω (1 - ω)

При проведении выборочного наблюдения возникают систематические и случайные ошибки. Систематические ошибки возникают в силу нарушения правил отбора единиц в выборку. Изменив правила отбора, от таких ошибок можно избавиться.

Случайные ошибки возникают в силу несплошного характера обследования. Иначе их называют ошибками репрезентативности (представительности). Случайные ошибки разделяют на средние и предельные ошибки выборки, которые определяются как при расчете признака, так и при расчете доли.

Средние и предельные ошибки связаны следующим соотношением : Δ = tμ , где Δ - предельная ошибка выборки, μ - средняя ошибка выборки, t - коэффициент доверия, определяемый в зависимости от уровня вероятности. В таблице 2 приведены некоторые значения t, взятые из теории вероятностей.

Величина средней ошибки выборки рассчитывается дифференцированно в зависимости от способа отбора и процедуры выборки. Основные формулы для расчета ошибок выборки представлены в таблице 3.

Таблица 3 - Основные формулы для расчета ошибок выборки при повторном и бесповторном отборе
Показатель Обозначение и формула
Генеральная совокупность Выборочная совокупность
Средняя ошибка признака при случайном повторном отборе
Средняя ошибка доли при случайном повторном отборе
Предельная ошибка признака при случайном повторном отборе
Предельная ошибка доли при случайном повторном отборе
Средняя ошибка признака при случайном бесповторном отборе
Средняя ошибка доли при случайном бесповторном отборе
Предельная ошибка признака при случайном бесповторном отборе
Предельная ошибка доли при случайном бесповторном отборе

Расчет средней и предельной ошибок выборки позволяет определить возможные пределы, в которых будут находиться характеристики генеральной совокупности .

Например, для выборочной средней такие пределы устанавливаются на основе следующих соотношений:

Пределы доли признака в генеральной совокупности р.

Примеры решения задач по теме «Выборочное наблюдение в статистике»

Задача 1 . Имеется информация о выпуске продукции (работ, услуг), полученной на основе 10% выборочного наблюдения по предприятиям области:

Определить: 1) по предприятиям, включенным в выборку: а) средний размер произведенной продукции на одно предприятие; б) дисперсию объема производства; в) долю предприятий с объемом производства продукции более 400 тыс. руб.; 2) в целом по области с вероятностью 0,954 пределы, в которых можно ожидать: а) средний объем производства продукции на одно предприятие; б) долю предприятий с объемом производства продукции более 400 тыс. руб.; 3) общий объем выпуска продукции по области.

Решение

Для решения задачи расширим предложенную таблицу.

1) По предприятиям, включенным в выборку, средний размер произведенной продукции на одно предприятие

110800/400 = 277 тыс. руб.

Дисперсию объема производства вычислим упрощенным способом σ 2 = 35640000/400 – 277 2 = 89100 - 76229 = 12371.

Число предприятий, объем производства продукции которых превышает 400 тыс. руб. равно 36+12 = 48, а их доля равна ω = 48:400 = 0,12 = 12%.

2) Из теории вероятности известно, что при вероятности Р=0,954 коэффициент доверия t=2. Предельная ошибка выборки

2√12371:400 = 11,12 тыс. руб.

Установим границы генеральной средней: 277-11,12 ≤Хср≤ 277+11,12; 265,88 ≤Хср≤ 288,12

Предельная ошибка выборки доли предприятий

2√0,12*0,88/400 = 0,03

Определим границы генеральной доли: 0,12-0,03≤ р ≤0,12+0,03; 0,09≤ р ≤0,15

3) Поскольку рассматриваемая группа предприятий составляет 10% от общего числа предприятий области, то в целом по области насчитывается 4000 предприятий. Тогда общий объем выпуска продукции по области лежит в пределах 265,88×4000≤Q≤288,12×4000; 1063520 ≤ Q ≤ 1152480

Задача 2 . По результатам контрольной проверки налоговыми службами 400 бизнес-структур, у 140 из них в налоговых декларациях не полностью указаны доходы, подлежащие налогообложению. Определите в генеральной совокупности (по всему району) долю бизнес-структур, скрывших часть доходов от уплаты налогов, с вероятностью 0,954.

Решение

По условию задачи число единиц в выборочной совокупности n=400, число единиц, обладающих рассматриваемым признаком m=140, вероятность Р=0,954.

Из теории вероятностей известно, что при вероятности Р=0,954 коэффициент доверия t=2.

Долю единиц, обладающих указанным признаком, определим по формуле: p=w+∆p, где w = m/n=140/400=0,35=35%,
а предельную ошибку признака ∆p получим из формулы: ∆p= t √w(1-w)/n = 2√0,35×0,65/400 ≈ 0,5 = 5%

Тогда р = 35±5%.

Ответ : Доля бизнес-структур, скрывших часть доходов от уплаты налогов с вероятностью 0,954 равна 35±5%.

Средняя ошибка выборки всегда присутствует в выборочных исследованиях и появляется вследствие того, что обследуются не все единицы статистической совокупности, а лишь ее часть.

Средняя ошибка выборки превращается в предельную ошибку Δ при умножении ее на коэффициент доверияt , который задается предварительно, исходя из требуемой точности наблюдения. Предельная ошибка позволяет судить об «истинном» размере параметра в генеральной совокупности с определенной степенью вероятности

При типическом и серийном отборе, при расчете ошибки выборки вместо общей дисперсии 2 ) следует использовать среднюю из внутригрупповых дисперсий и межгрупповую дисперсию
, где
- частная дисперсия i группы,объем i группы

Формулы предельной ошибки случайной выборки при определении средней

Для повторного отбора

Формулы предельной ошибки случайной выборки при определении доли

Для повторного отбора

Для бесповторного отбора

Формулы численности случайной выборки при определении средней величины

Формулы численности случайной выборки при определении доли изучаемого признака

Предельная разница между генеральной и выборочной средней соответствует величине предельной ошибки

Значения вероятности и соответственно t находятся по таблицам распределения:

  • Стьюдента (в случае малой выборки)

Формулы случайной выборки подходят и для механической выборки.

При необходимости округления, при случайной выборке – округление в большую сторону, при механической – в меньшую.

Малая выборка

Если численность выборочной совокупности не более 30 единиц, то средняя ошибка малой выборки при определении средней величины рассчитывается по формуле:

Для расчета ошибки малой выборки применяется уточненная формула дисперсии

Типы задач выборочного наблюдения

    определение ошибки выборки,

    определение численности выборочной совокупности n ,

    определение вероятности того, что выборочная средняя (или доля) отклонится от генеральной не более, чем на заданную величину t=Δ/μ,

    оценка случайности расхождений показателей выборочных наблюдений,

    перенос выборочных характеристик на генеральную совокупность.

Проверка гипотез о средней и доле

Оценка случайности расхождений показателей выборочных наблюдений


Методы переноса выборочных данных на генеральную совокупность

    метод взвешивания;

    метод перевзвешивания;

    метод заполнения случайным подбором в классах замещения.

Ошибки систематические и случайные

Модульная единица 2 Ошибки выборки

Поскольку выборка охватывает, как правило, весьма незначительную часть генеральной совокупности, то следует предполагать, что будут иметь место различия между оценкой и характеристикой генеральной совокупности, которую эта оценка отображает. Эти различия получили название ошибок отображения или ошибок репрезентативности. Ошибки репрезентативности подразделяются на два типа: систематические и случайные.

Систематические ошибки - это постоянное завышение или занижение значения оценки по сравнению с характеристикой генеральной совокупности. Причиной появления систематической ошибки является несоблюдение принципа равновероятности попадания каждой единицы генеральной совокупности в выборку, то есть выборка формируется из преимущественно «худших» (или « лучших») представителей генеральной совокупности. Соблюдение принципа равновозможности попадания каждой единицы в выборку позволяет полностью исключить этот тип ошибок.

Случайные ошибки – это меняющиеся от выборки к выборке по знаку и величине различия между оценкой и оцениваемой характеристикой генеральной совокупности. Причина возникновения случайных ошибок- игра случая при формировании выборки, составляющей лишь часть генеральной совокупности. Этот тип ошибок органически присущ выборочному методу. Исключить их полностью нельзя, задача состоит в том, чтобы предсказать их возможную величину и свести их к минимуму. Порядок связанных в связи с этим действий вытекает из рассмотрения трех видов случайных ошибок: конкретной, средней и предельной.

2.2.1 Конкретная ошибка – это ошибка одной проведенной выборки. Если средняя по этой выборке () является оценкой для генеральной средней (0) и, если предположить, что эта генеральная средняя нам известна, то разница = -0 и будет конкретной ошибкой этой выборки. Если из этой генеральной совокупности выборку повторим многократно, то каждый раз получим новую величину конкретной ошибки: …, и так далее. Относительно этих конкретных ошибок можно сказать следующее: некоторые из них будут совпадать между собой по величине и знаку, то есть имеет место распределение ошибок, часть из них будет равна 0, наблюдается совпадение оценки и параметра генеральной совокупности;

2.2.2 Средняя ошибка – это средняя квадратическая из всех возможных по воле случая конкретных ошибок оценки: , где - величина меняющихся конкретных ошибок; частота (вероятность) встречаемости той или иной конкретной ошибки. Средняя ошибка выборки показывает насколько в среднем можно ошибиться, если на основе оценки делается суждение о параметре генеральной совокупности. Приведенная формула раскрывает содержание средней ошибки, но она не может быть использована для практических расчетов, хотя бы потому, что предполагает знание параметра генеральной совокупности, что само по себе исключает необходимость выборки.



Практические расчеты средней ошибки оценки основываются на той предпосылке, что она (средняя ошибка) по сути является средним квадратическим отклонением всех возможных значений оценки. Эта предпосылка позволяет получить алгоритмы расчета средней ошибки, опирающиеся на данные одной единственной выборки. В частности средняя ошибка выборочной средней может быть установлена на основе следующих рассуждений. Имеется выборка (,… ) состоящая из единиц. По выборке в качестве оценки генеральной средней определена выборочная средняя . Каждое значение(,… ) , стоящее под знаком суммы, следует рассматривать как независимую случайную величину, поскольку при бесконечном повторении выборки первая, вторая и т.д. единицы могут принимать любые значения из присутствующих в генеральной совокупности. Следовательно Поскольку, как известно, дисперсия суммы независимых случайных величин равна сумме дисперсий, то . Отсюда следует, что средняя ошибка для выборочной средней будет равная и находится она в обратной зависимости от численности выборки (через корень квадратный из нее) и в прямой от среднего квадратического отклонения признака в генеральной совокупности. Это логично, поскольку выборочная средняя является состоятельной оценкой для генеральной средней и по мере увеличения численности выборки приближается по своему значению к оцениваемому параметру генеральной совокупности. Прямая зависимость средней ошибки от колеблемости признака обусловлена тем, что чем больше изменчивость признака в генеральной совокупности, тем сложнее на основе выборки построить адекватную модель генеральной совокупности. На практике среднее квадратическое отклонение признака по генеральной совокупности заменяется его оценкой по выборке, и тогда формула для расчета средней ошибки выборочной средней приобретает вид:, при этом учитывая смещенность выборочной дисперсии , выборочное среднее квадратическое отклонение рассчитывается по формуле = . Так как символом n обозначена численность выборки. ,то в знаменателе при расчете среднего квадратического отклонения должна использоваться не численность выборки (n), а так называемое число степеней свободы (n-1). Под числом степеней свободы понимается число единиц в совокупности, которые могут свободно варьировать (изменяться), если по совокупности определена какая-либо характеристика. В нашем случае, поскольку по выборке определена ее средняя, свободно варьировать могут единицы.

В таблице 2.2 приведены формулы для расчета средних ошибок различных выборочных оценок. Как видно из этой таблицы, величина средней ошибки по всем оценкам находится в обратной связи с численностью выборки и в прямой с колеблемостью. Это можно сказать и относительно средней ошибки выборочной доли (частости). Под корнем стоит дисперсия альтернативного признака, установленная по выборке ()

Приведенные в таблице 2.2 формулы относятся к так называемому случайному, повторному отбору единиц в выборку. При других способах отбора, о которых речь пойдет ниже, формулы будут несколько видоизменяться.

Таблица 2.2

Формулы для расчета средних ошибок выборочных оценок

2.2.3 Предельная ошибка выборки Знание оценки и ее средней ошибки в ряде случаев совершенно недостаточно. Например, при использовании гормонов при кормлении животных знать только средний размер неразложившихся их вредных остатков и среднюю ошибку, значит подвергать потребителей продукции серьезной опасности. Здесь настоятельно напрашивается необходимость определения максимальной (предельной ошибки ). При использовании выборочного метода предельная ошибка устанавливается не в виде конкретной величины, а виде равных границ

(интервалов) в ту и другую сторону от значения оценки.

Определение границ предельной ошибки основывается на особенностях распределения конкретных ошибок. Для так называемых больших выборок, численность которых более 30 единиц () , конкретные ошибки распределяются в соответствии с нормальным законом распределения; при малых выборках () конкретные ошибки распределяются в соответствии с законом распределения Госсета

(Стьюдента). Применительно к конкретным ошибкам выборочной средней функция нормального распределения имеет вид: , где - плотность вероятности появления тех или иных значений , при условии, что , где выборочные средние; - генеральная средняя, - средняя ошибка для выборочной средней. Поскольку средняя ошибка () является величиной постоянной, то в соответствии с нормальным законом распределяются конкретные ошибки , выраженные в долях средней ошибки, или так называемых нормированных отклонениях.

Взяв интеграл функции нормального распределения, можно установить вероятность того, что ошибка будет заключена в некотором интервале изменения t и вероятность того, что ошибка выйдет за пределы этого интервала (обратное событие). Например, вероятность того, что ошибка не превысит половину средней ошибки (в ту и другую сторону от генеральной средней) составляет 0,3829, что ошибка будет заключена в пределах одной средней ошибки - 0,6827, 2-х средних ошибок -0,9545 и так далее.

Взаимосвязь между уровнем вероятности и интервалом изменения t (а в конечном счете интервалом изменения ошибки) позволяет подойти к определению интервала (или границ) предельной ошибки, увязав его величину с вероятностью осуществления.. Вероятность осуществления -это вероятность того, что ошибка будет находится в некотором интервале. Вероятность осуществления будет «доверительной» в том случае, если противоположное событие (ошибка будет находится вне интервала) имеет такую вероятность появления, которой можно пренебречь. Поэтому доверительный уровень вероятности устанавливают, как правило, не ниже 0,90 (вероятность противоположного события равна 0,10). Чем больше негативных последствий имеет появление ошибок вне установленного интервала, тем выше должен быть доверительный уровень вероятности (0,95; 0,99 ; 0,999 и так далее).

Выбрав доверительный уровень вероятности по таблице интеграла вероятности нормального распределения, следует найти соответствующее значение t, а затем используя выражение =определить интервал предельной ошибки . Смысл полученной величины в следующем – с принятым доверительным уровнем вероятности предельная ошибка выборочной средней не превысит величину .

Для установления границ предельной ошибки на основе больших выборок для других оценок (дисперсии, среднего квадратического отклонения, доли и так далее) используется выше рассмотренный подход, с учетом того, что для определения средней ошибки для каждой оценки используется свой алгоритм.

Что касается малых выборок () то, как уже говорилось, распределение ошибок оценок соответствует в этом случае распределению t - Стьюдента. Особенность этого распределения состоит в том, что в качестве параметра в нем, наряду с ошибкой, присутствует численность выборки,вернее не численность выборки, а число степеней свободы При увеличении численности выборки распределение t-Стьюдента приближается к нормальному, а при эти распределения практически совпадают. Сопоставляя значения величины t-Стьюдента и t - нормального распределения при одной и той же доверительной вероятности можно сказать, что величина t-Стьюдента всегда больше t - нормального распределения, причем, различия возрастают с уменьшением численности выборки и с повышением доверительного уровня вероятности. Следовательно, при использовании малых выборок имеют место по сравнению с выборками большими, более широкие границы предельной ошибки, причем, эти границы расширяются с уменьшением численности выборки и повышением доверительного уровня вероятности.

Статистическая совокупность — множество единиц, обладающих массовостью, типичностью, качественной однородностью и наличием вариации.

Статистическая совокупность состоит из материально существующих объектов (Работники, предприятия, страны, регионы), является объектом .

Единица совокупности — каждая конкретная единица статистической совокупности.

Одна и та же статистическая совокупность может быть однородна по одному признаку и неоднородна по другому.

Качественная однородность — сходство всех единиц совокупности по какому-либо признаку и несходство по всем остальным.

В статистической совокупности отличия одной единицы совокупности от другой чаще имеют количественную природу. Количественные изменения значений признака разных единиц совокупности называются вариацией.

Вариация признака — количественное изменение признака (для количественного признака) при переходе от одной единицы совокупности к другой.

Признак — это свойство, характерная черта или иная особенность единиц, объектов и явлений, которая может быть наблюдаема или измерена. Признаки делятся на количественные и качественные. Многообразие и изменчивость величины признака у отдельных единиц совокупности называется вариацией .

Атрибутивные (качественные) признаки не поддаются числовому выражению (состав населения по полу). Количественные признаки имеют числовое выражение (состав населения по возрасту).

Показатель — это обобщающая количественно качественная характеристика какого-либо свойства единиц или совокупности в целом в конкретных условиях времени и места.

Система показателей — это совокупность показателей всесторонне отражающих изучаемое явление.

Например, изучается зарплата:
  • Признак — оплата труда
  • Статистическая совокупность — все работники
  • Единица совокупности — каждый работник
  • Качественная однородность — начисленная зарплата
  • Вариация признака — ряд цифр

Генеральная совокупность и выборка из нее

Основу составляет множество данных, полученных в результате измерения одного или нескольких признаков. Реально наблюдаемая совокупность объектов, статистически представленная рядом наблюдений случайной величины , является выборкой , а гипотетически существующая (домысливаемая) — генеральной совокупностью . Генеральная совокупность может быть конечной (число наблюдений N = const ) или бесконечной (N = ∞ ), а выборка из генеральной совокупности — это всегда результат ограниченного ряда наблюдений. Число наблюдений , образующих выборку, называется объемом выборки . Если объем выборки достаточно велик (n → ∞ ) выборка считается большой , в противном случае она называется выборкой ограниченного объема . Выборка считается малой , если при измерении одномерной случайной величины объем выборки не превышает 30 (n <= 30 ), а при измерении одновременно нескольких (k ) признаков в многомерном пространстве отношение n к k не превышает 10 (n/k < 10) . Выборка образует вариационный ряд , если ее члены являются порядковыми статистиками , т. е. выборочные значения случайной величины Х упорядочены по возрастанию (ранжированы), значения же признака называются вариантами .

Пример . Практически одна и та же случайно отобранная совокупность объектов — коммерческих банков одного административного округа Москвы, может рассматриваться как выборка из генеральной совокупности всех коммерческих банков этого округа, и как выборка из генеральной совокупности всех коммерческих банков Москвы, а также как выборка из коммерческих банков страны и т.д.

Основные способы организации выборки

Достоверность статистических выводов и содержательная интерпретация результатов зависит от репрезентативности выборки, т.е. полноты и адекватности представления свойств генеральной совокупности, по отношению к которой эту выборку можно считать представительной. Изучение статистических свойств совокупности можно организовать двумя способами: с помощью сплошного и несплошного . Сплошное наблюдение предусматривает обследование всех единиц изучаемой совокупности , а несплошное (выборочное) наблюдение — только его части.

Существуют пять основных способов организации выборочного наблюдения:

1. простой случайный отбор , при котором объектов случайно извлекаются из генеральной совокупности объектов (например с помощью таблицы или датчика случайных чисел), причем каждая из возможных выборок имеют равную вероятность. Такие выборки называются собственно-случайными ;

2. простой отбор с помощью регулярной процедуры осуществляется с помощью механической составляющей (например, даты, дня недели, номера квартиры, буквы алфавита и др.) и полученные таким способом выборки называются механическими ;

3. стратифицированный отбор заключается в том, что генеральная совокупность объема подразделяется на подсовокупности или слои (страты) объема так что . Страты представляют собой однородные объекты с точки зрения статистических характеристик (например, население делится на страты по возрастным группам или социальной принадлежности; предприятия — по отраслям). В этом случае выборки называются стратифицированными (иначе, расслоенными, типическими, районированными );

4. методы серийного отбора используются для формирования серийных или гнездовых выборок . Они удобны в том случае, если необходимо обследовать сразу "блок" или серию объектов (например, партию товара, продукцию определенной серии или население при территориально-административном делении страны). Отбор серий можно осуществить собственно-случайным или механическим способом. При этом проводится сплошное обследование определенной партии товара, или целой территориальной единицы (жилого дома или квартала);

5. комбинированный (ступенчатый) отбор может сочетать в себе сразу несколько способов отбора (например, стратифицированный и случайный или случайный и механический); такая выборка называется комбинированной .

Виды отбора

По виду различаются индивидуальный, групповой и комбинированный отбор. При индивидуальном отборе в выборочную совокупность отбираются отдельные единицы генеральной совокупности, при групповом отборе — качественно однородные группы (серии) единиц, а комбинированный отбор предполагает сочетание первого и второго видов.

По методу отбора различают повторную и бесповторную выборку.

Бесповторным называется отбор, при котором попавшая в выборку единица не возвращается в исходную совокупность и в дальнейшем выборе не участвует; при этом численность единиц генеральной совокупности N сокращается в процессе отбора. При повторном отборе попавшая в выборку единица после регистрации возвращается в генеральную совокупность и таким образом сохраняет равную возможность наряду с другими единицами быть использованной в дальнейшей процедуре отбора; при этом численность единиц генеральной совокупности N остается неизменной (метод в социально-экономических исследованиях применяется редко). Однако, при большом N (N → ∞) формулы для бесповторного отбора приближаются к аналогичным для повторного отбора и практически чаще используются последние (N = const ).

Основные характеристики параметров генеральной и выборочной совокупности

В основе статистических выводов проведенного исследования лежит распределение случайной величины , наблюдаемые же значения (х 1 , х 2 , … , х n) называются реализациями случайной величины Х (n — объем выборки). Распределение случайной величины в генеральной совокупности носит теоретический, идеальный характер, а ее выборочный аналог является эмпирическим распределением. Некоторые теоретические распределения заданы аналитически, т.е. их параметры определяют значение функции распределения в каждой точке пространства возможных значений случайной величины . Для выборки же функцию распределения определить трудно, а иногда невозможно, поэтому параметры оценивают по эмпирическим данным, а затем их подставляют в аналитическое выражение, описывающее теоретическое распределение. При этом предположение (или гипотеза ) о виде распределения может быть как статистически верным, так и ошибочным. Но в любом случае восстановленное по выборке эмпирическое распределение лишь грубо характеризует истинное. Важнейшими параметрами распределений являются математическое ожидание и дисперсия .

По своей природе распределения бывают непрерывными и дискретными . Наиболее известным непрерывным распределением является нормальное . Выборочными аналогами параметров идля него являются: среднее значение и эмпирическая дисперсия . Среди дискретных в социально-экономических исследованиях наиболее часто применяется альтернативное (дихотомическое) распределение. Параметр математического ожидания этого распределения выражает относительную величину (или долю ) единиц совокупности, которые обладают изучаемым признаком (она обозначена буквой ); доля совокупности, не обладающая этим признаком, обозначается буквой q (q = 1 — p) . Дисперсия же альтернативного распределения также имеет эмпирический аналог .

В зависимости от вида распределения и от способа отбора единиц совокупности по-разному вычисляются характеристики параметров распределения. Основные из них для теоретического и эмпирического распределений приведены в табл. 1.

Долей выборки k n называется отношение числа единиц выборочной совокупности к числу единиц генеральной совокупности:

k n = n/N .

Выборочная доля w — это отношение единиц, обладающих изучаемым признаком x к объему выборки n :

w = n n /n .

Пример. В партии товара, содержащей 1000 ед., при 5% выборке доля выборки k n в абсолютной величине составляет 50 ед. (n = N*0,05); если же в этой выборке обнаружено 2 бракованных изделия, то выборочная доля брака w составит 0,04 (w = 2/50 = 0,04 или 4%).

Так как выборочная совокупность отлична от генеральной, то возникают ошибки выборки .

Таблица 1. Основные параметры генеральной и выборочной совокупностей

Ошибки выборки

При любом (сплошном и выборочном) могут встретиться ошибки двух видов: регистрации и репрезентативности. Ошибки регистрации могут иметь случайный и систематический характер. Случайные ошибки складываются из множества различных неконтролируемых причин, носят непреднамеренный характер и обычно по совокупности уравновешивают друг друга (например, изменения показателей прибора при температурных колебаниях в помещении).

Систематические ошибки тенденциозны, так как нарушают правила отбора объектов в выборку (например, отклонения в измерениях при изменении настройки измерительного прибора).

Пример. Для оценки социального положения населения в городе предусмотрено обследовать 25% семей. Если при этом выбор каждой четвертой квартиры основан на ее номере, то существует опасность отобрать все квартиры только одного типа (например, однокомнатные), что обеспечит систематическую ошибку и исказит результаты; выбор же номера квартиры по жребию более предпочтителен, так как ошибка будет случайной.

Ошибки репрезентативности присущи только выборочному наблюдению, их невозможно избежать и они возникают в результате того, что выборочная совокупность не полностью воспроизводит генеральную. Значения показателей, получаемых по выборке, отличаются от показателей этих же величин в генеральной совокупности (или получаемых при сплошном наблюдении).

Ошибка выборочного наблюдения есть разность между значением параметра в генеральной совокупности и ее выборочным значением. Для среднего значения количественного признака она равна: , а для доли (альтернативного признака) — .

Ошибки выборки свойственны только выборочным наблюдениям. Чем больше эти ошибки, тем больше эмпирическое распределение отличается от теоретического. Параметры эмпирического распределения и являются случайными величинами, следовательно, ошибки выборки также являются случайными величинами, могут принимать для разных выборок разные значения и поэтому принято вычислять среднюю ошибку .

Средняя ошибка выборки есть величина , выражающая среднее квадратическое отклонение выборочной средней от математического ожидания. Эта величина при соблюдении принципа случайного отбора зависит прежде всего от объема выборки и от степени варьирования признака: чем больше и чем меньше вариация признака (следовательно, и значение ), тем меньше величина средней ошибки выборки . Соотношение между дисперсиями генеральной и выборочной совокупностей выражается формулой:

т.е. при достаточно больших можно считать, что . Средняя ошибка выборки показывает возможные отклонения параметра выборочной совокупности от параметра генеральной. В табл. 2 приведены выражения для вычисления средней ошибки выборки при разных методах организации наблюдения.

Таблица 2. Средняя ошибка (m) выборочных средней и доли для разных видов выборки

Где - средняя из внутригрупповых выборочных дисперсий для непрерывного признака;

Средняя из внутригрупповых дисперсий доли;

— число отобранных серий, — общее число серий;

,

где — средняя -й серии;

— общая средняя по всей выборочной совокупности для непрерывного признака;

,

где — доля признака в -й серии;

— общая доля признака по всей выборочной совокупности.

Однако о величине средней ошибки можно судить лишь с определенной, вероятностью Р (Р ≤ 1). Ляпунов А.М. доказал, что распределение выборочных средних , a следовательно, и их отклонений от генеральной средней, при достаточно большом числе приближенно подчиняется нормальному закону распределения при условии, что генеральная совокупность обладает конечной средней и ограниченной дисперсией.

Математически это утверждение для средней выражается в виде:

а для доли выражение (1) примет вид:

где - есть предельная ошибка выборки , которая кратна величине средней ошибки выборки , а коэффициент кратности — есть критерий Стьюдента ("коэффициент доверия"), предложенный У.С. Госсетом (псевдоним "Student"); значения для разного объема выборки хранятся в специальной таблице.

Значения функции Ф(t) при некоторых значениях t равны:

Следовательно, выражение (3) может быть прочитано так: с вероятностью Р = 0,683 (68,3%) можно утверждать, что разность между выборочной и генеральной средней не превысит одной величины средней ошибки m (t = 1) , с вероятностью Р = 0,954 (95,4%) — что она не превысит величины двух средних ошибок m (t = 2) , с вероятностью Р = 0,997 (99,7%) — не превысит трех значений m (t = 3) . Таким образом, вероятность того, что эта разность превысит трехкратную величину средней ошибки определяет уровень ошибки и составляет не более 0,3% .

В табл. 3 приведены формулы для вычисления предельной ошибки выборки.

Таблица 3. Предельная ошибка (D) выборки для средней и доли (р) для разных видов выборочного наблюдения

Распространение выборочных результатов на генеральную совокупность

Конечной целью выборочного наблюдения является характеристика генеральной совокупности. При малых объемах выборки эмпирические оценки параметров ( и ) могут существенно отклоняться от их истинных значений ( и ). Поэтому возникает необходимость установить границы, в пределах которых для выборочных значений параметров ( и ) лежат истинные значения ( и ).

Доверительным интервалом какого-либо параметра θгенеральной совокупности называется случайная область значений этого параметра, которая с вероятностью близкой к 1 (надежностью ) содержит истинное значение этого параметра.

Предельная ошибка выборки Δ позволяет определить предельные значения характеристик генеральной совокупности и их доверительные интервалы , которые равны:

Нижняя граница доверительного интервала получена путем вычитания предельной ошибки из выборочного среднего (доли), а верхняя — путем ее добавления.

Доверительный интервал для средней использует предельную ошибку выборки и для заданного уровня достоверности определяется по формуле:

Это означает, что с заданной вероятностью Р , которая называется доверительным уровнем и однозначно определяется значением t , можно утверждать, что истинное значение средней лежит в пределах от ,а истинное значение доли — в пределах от

При расчете доверительного интервала для трех стандартных доверительных уровней Р = 95%, Р = 99% и Р = 99,9% значение выбирается по . Приложения в зависимости от числа степеней свободы . Если объем выборки достаточно велик, то соответствующие этим вероятностям значения t равны: 1,96, 2,58 и 3,29 . Таким образом, предельная ошибка выборки позволяет определить предельные значения характеристик генеральной совокупности и их доверительные интервалы:

Распространение результатов выборочного наблюдения на генеральную совокупность в социально-экономических исследованиях имеет свои особенности, так как требует полноты представительности всех ее типов и групп. Основой для возможности такого распространения является расчет относительной ошибки :

где Δ % - относительная предельная ошибка выборки; , .

Существуют два основных метода распространения выборочного наблюдения на генеральную совокупность: прямой пересчет и способ коэффициентов .

Сущность прямого пересчета заключается в умножении выборочного среднего значения!!\overline{x} на объем генеральной совокупности .

Пример . Пусть среднее число детей ясельного возраста в городе оценено выборочным методом и составило человека. Если в городе 1000 молодых семей, то число необходимых мест в муниципальных детских яслях получают умножением этой средней на численность генеральной совокупности N = 1000, т.е. составит 1200 мест.

Способ коэффициентов целесообразно использовать в случае, когда выборочное наблюдение проводится с целью уточнения данных сплошного наблюдения.

При этом используют формулу:

где все переменные — это численность совокупности:

Необходимый объем выборки

Таблица 4. Необходимый объем (n) выборки для разных видов организации выборочного наблюдения

При планировании выборочного наблюдения с заранее заданным значением допустимой ошибки выборки необходимо правильно оценить требуемый объем выборки . Этот объем может быть определен на основе допустимой ошибки при выборочном наблюдении исходя из заданной вероятности , гарантирующей допустимую величину уровня ошибки (с учетом способа организации наблюдения). Формулы для определения необходимой численности выборки n легко получить непосредственно из формул предельной ошибки выборки. Так, из выражения для предельной ошибки:

непосредственно определяется объем выборки n :

Эта формула показывает, что с уменьшением предельной ошибки выборки Δ существенно увеличивается требуемый объем выборки , который пропорционален дисперсии и квадрату критерия Стьюдента .

Для конкретного способа организации наблюдения требуемый объем выборки вычисляется согласно формулам, приведенным в табл. 9.4.

Практические примеры расчета

Пример 1. Вычисление среднего значения и доверительного интервала для непрерывного количественного признака.

Для оценки скорости расчета с кредиторами в банке проведена случайная выборка 10 платежных документов. Их значения оказались равными (в днях): 10; 3; 15; 15; 22; 7; 8; 1; 19; 20.

Необходимо с вероятностью Р = 0,954 определить предельную ошибку Δ выборочной средней и доверительные пределы среднего времени расчетов.

Решение. Среднее значение вычисляется по формуле из табл. 9.1 для выборочной совокупности

Дисперсия вычисляется по формуле из табл. 9.1.

Средняя квадратическая погрешность дня.

Ошибка средней вычисляется по формуле:

т.е. среднее значение равно x ± m = 12,0 ± 2,3 дней .

Достоверность среднего составила

Предельную ошибку вычислим по формуле из табл. 9.3 для повторного отбора, так как численность генеральной совокупности неизвестна, и для Р = 0,954 уровня достоверности.

Таким образом, среднее значение равно `x ± D = `x ± 2m = 12,0 ± 4,6, т.е. его истинное значение лежит в пределах от 7,4 до16,6 дней.

Использование таблицы Стьюдента. Приложения позволяет заключить, что для n = 10 — 1 = 9 степеней свободы полученное значение достоверно с уровнем значимости a £ 0,001, т.е. полученное значение среднего достоверно отличается от 0.

Пример 2. Оценка вероятности (генеральной доли) р.

При механическом выборочном способе обследования социального положения 1000 семей выявлено, что доля малообеспеченных семей составила w = 0,3 (30%) (выборка была 2% , т.е. n/N = 0,02 ). Необходимо с уровнем достоверности р = 0,997 определить показатель р малообеспеченных семей во всем регионе.

Решение. По представленным значениям функции Ф(t) найдем для заданного уровня достоверности Р = 0,997 значение t = 3 (см. формулу 3). Предельную ошибку доли w определим по формуле из табл. 9.3 для бесповторного отбора (механическая выборка всегда является бесповторной):

Предельная относительная ошибка выборки в % составит:

Вероятность (генеральная доля) малообеспеченных семей в регионе составит р=w±Δ w , а доверительные пределы р вычисляются исходя из двойного неравенства:

w — Δ w ≤ p ≤ w — Δ w , т.е. истинное значение р лежит в пределах:

0,3 — 0,014 < p <0,3 + 0,014, а именно от 28,6% до 31,4%.

Таким образом, с вероятностью 0,997 можно утверждать, что доля малообеспеченных семей среди всех семей региона составляет от 28,6% до 31,4%.

Пример 3. Вычисление среднего значения и доверительного интервала для дискретного признака, заданного интервальным рядом.

В табл. 5. задано распределение заявок на изготовление заказов по срокам их выполнения предприятием.

Таблица 5. Распределение наблюдений по срокам появления

Решение. Средний срок выполнения заявок вычисляется по формуле:

Средний срок составит:

= (3*20 + 9*80 + 24*60 + 48*20 + 72*20)/200 = 23,1 мес.

Тот же ответ получим, если используем данные о р i из предпоследней колонки табл. 9.5, используя формулу:

Заметим, что середина интервала для последней градации находится путем искусственного ее дополнения шириной интервала предыдущей градации равной 60 — 36 = 24 мес.

Дисперсия вычисляется по формуле

где х i - середина интервального ряда.

Следовательно!!\sigma = \frac {20^2 + 14^2 + 1 + 25^2 + 49^2}{4}, а средняя квадратическая погрешность .

Ошибка средней вычисляется по формуле мес., т.е. среднее значение равно!!\overline{x} ± m = 23,1 ± 13,4.

Предельную ошибку вычислим по формуле из табл. 9.3 для повторного отбора, так как численность генеральной совокупности неизвестна, для 0,954 уровня достоверности:

Таким образом, среднее значение равно:

т.е. его истинное значение лежит в пределах от 0 до 50 мес.

Пример 4. Для определения скорости расчетов с кредиторами N = 500 предприятий корпорации в коммерческом банке необходимо провести выборочное исследование методом случайного бесповторного отбора. Определить необходимый объем выборки n, чтобы с вероятностью Р = 0,954 ошибка среднего значения выборки не превышала 3-х дней, если пробные оценки показали, что среднее квадратическое отклонение s составило 10 дней.

Решение . Для определения числа необходимых исследований n воспользуемся формулой для бесповторного отбора из табл. 9.4:

В ней значение t определяется из для уровня достоверности Р = 0,954. Оно равно 2. Среднее квадратическое значение s = 10, объем генеральной совокупности N = 500, а предельная ошибка среднего значения Δ x = 3. Подставляя эти значения в формулу, получим:

т.е. выборку достаточно составить из 41 предприятия, чтобы оценить требуемый параметр — скорость расчетов с кредиторами.



Поделиться