Замечательные линии четвертого и высших порядков. Математическое моделирование и его практическое применение Астроида применение в жизни


Ответ траектория точки В - астроида s t)  

К циклоидным кривым относятся не только циклоида, эпи- и гипоциклоида, но также трохоида, кардиоида, астроида, описанные ниже.  

Координаты X, у удовлетворяют в этом случае уравнению астроиды (фиг. 91)  

Исключение дает (астроида)  

При р = г = (т = 3) гипоциклоида называется астроидой (фиг. 64), и уравнения принимают вид x=R os i y=R sin"i или x -y =R .  

При р=г=- (т = 3) гипоциклоида называется астроидой (фиг. 64), и уравнения принимают вид  

На рис. 72 отрезок АВ = I закреплен на звене АВ = I под углом 0 = 180°. Поэтому астроида, вычерчиваемая точкой Bi, повернута относительно астроиды, вычерчиваемой точкой В, на угол т6,  

Разберем вопрос о проведении касательных к этой кривой с помощью рассматриваемого механизма. В соответствии с правилом, сформулированным выше, касательная к астроиде отсечет на линии кривошипа ОА отрезок, равный знаменателю дроби в правой части выражения (160). Применительно к механизму, представленному на рис. 72, размер отсекаемого отрезка определится по формуле (172)  

Практически для построения астроид в условиях производства оказывается пригодным каждое прямило, в котором движущаяся  

На рис. 72 мы показали механизм, обеспечивающий концам S и Si звена 10 движение по двум астроидам, повернутым одна относительно другой на 45°.  

Кривая, описываемая уравнениями (57) и (58), будет кривой типа астроиды. Оси симметрии этой кривой образуют с осями Ах  

Отобразим, как это сделано в , внешность астроиды па полуплоскость Re5>0  

Приняв а = р = 1, построим контур, в котором деформировалась астроида (рис. 24).  

Ползуны / и 2 скользят в неподвижных направляющих р и q, оси которых взаимно перпендикулярны. Отростки а и 6 ползунов 1 к 2 скользят в крестообразном ползуне 3, оси которого также взаимно перпендикулярны. Звено 4 входит во вращательную пару С с ползуном 3 и скользит в крестообразном ползуне 5, который скользит вдоль оси звена 6, входящего во вращательные пары Л и В с ползунами / и 2. При движении ползунов I к 2 вдоль направляющих и точка К описывает дугу астроиды, уравнение которой = где 1 - АВ. Прямая ЛВ при этом огибает  


Гипоциклоида имеет л - -1 точку возврата , каждая из которых с точки зрения концентрации напряжений эквивалентна концу трещины (на рис. ПЗО изображена астроида с п = 3). Дефекты такого типа могут определять прочность хрупких по-  

Найти уравнение касательной к астроиде.  

На рис. 72 изображен десятизвенный механизм, предназначенный для воспроизведения астроид. Астроида представляет собой обыкновенную гипоциклоиду, имеющую модуль т = и является алгебраической кривой 6-го порядка. Название астроида  

Таким образом, касательная к одной из-изображенных на чертеже астроид пройдет через точки С и 5 , а касательная к другой - через точки С и S. Но точки В а В являются концами шатуна В В ламбдообразной группы в прямиле Гарта. Поэтому конец В будет всегда скользить вдоль звена DDj, а конец В - вдоль перпендикуляра, восстановленного к DDj из точки С. Отсюда следует, что астроида, вычерчиваемая точкой В, является огибающей всех положений звена DD . Сказанное можно распространить также на астроиды, воспроизведенные точкой В или любой точкой окружности, описанной из А радиусом I.  

Как известно, подерой астроиды, если в качестве полюса выбран центр симметрии последней, является четырехлепестковая роза. Таким образом, достаточно удлинить отрезки ABi = АВ нарис. 72 (или на рис. 73) до размера АВ = ABi = L, чтобы получить с помощью этого  

КУЛ ИСИО-РЫ Ч АЖНЫ й МЕХАНИЗМ ВЯТКИНА ДЛЯ ВОСПРОИЗВЕДЕНИЯ АСТРОИДЫ  

Чтобы покончить с работами, связанными непосредственно с теорией крыла , отметим работу Г.Н. Бабаева О роторах Флеттнера (Учен. зап. Сарат. гос. университета, педагогич. факультет. Т. VH. Вып. 11, 1929), в которой автор применяет обычный метод изучения крыльев к случаю двух роторов Флеттнера. Между прочим, автор показал, что линия моментов в этом случае представляет собою астроиду. Что касается

Линией (кривой) четвертого порядка называют линию, определяемую алгебраическим уравнением четвертой степени относительно декартовых прямоугольных координат. Аналогично определяются линии (кривые) пятого, шестого и других порядков.

Множество линий (кривых) четвертого порядка содержат уже не десятки, а тысячи линий частного вида. Еще более разнообразными являются множества линий пятого и шестого порядка. Здесь рассматриваются отдельные виды линий четвертого и высших порядков, имеющие интересные свойства и практические применения.

Лемниската Бернулли

Обратимся к кривой, описываемой точкой М на плоскости так, что остается неизменным произведение р расстояний этой точки до двух определенных точек F 1 и F 2 той же плоскости. Такая кривая называется лемнискатой (лемниската по-гречески значит «ленточная»). Если длина отрезка F 1 F 2 есть с, то расстояния от середины О отрезка F 1 F 2 до F1 и F2 равны с/2 и произведение этих расстояний равно - с 2 /4. Потребуем сначала, чтобы величина р неизменного произведения равнялась как раз с 2 /4; тогда

линия порядок трансцендентный спираль

Рис. 8

точка О будет лежать на лемнискате, а сама лемниската будет иметь вид «лежащей восьмерки» (рис. 8). Если продолжить отрезок F 1 F 2 в обе стороны до пересечения с лемнискатой, то получим две точки А 1 и А 2 . Выразим расстояние между А 1 А 2 = х через известное расстояние с:

Фокусы лемнискаты - F1 (? c; 0) и F2 (c; 0). Возьмём произвольную точку M (x; y). Произведение расстояний от фокусов до точки M есть

И по определению оно равно c2:

Возводим в квадрат обе части равенства:

Раскрываем скобки в левой части:

Раскрываем скобки и свёртываем новый квадрат суммы:

Выносим общий множитель и переносим:

В данном случае a - радиус окружности, описывающей лемнискату. Проведя несложные преобразования, можно получить явное уравнение:

Возводим в квадрат и раскрываем скобки:

Приводим к виду

Это квадратное уравнение относительно y". Решив его, получим

Взяв корень и отбросив вариант с отрицательным вторым слагаемым, получим:

где положительный вариант определяет верхнюю половину лемнискаты, отрицательный - нижнюю.

Если величину неизменного произведения р взять не равной с 2 /4, то лемниската изменит свой вид. И при р меньше с 2 /4, лемниската состоит из двух овалов, каждый из которых содержит точки F 1 и F 2 , соответственно (рис. 9).

Рис. 9

Т.о. задавая различные условия для р и с 2 /4 будем получать лемнискаты различного вида (рис. 10).

Рис. 10

Возьмем теперь на плоскости любое количеств точек. F 1 , F 2 ,…, F n и заставим точку М двигаться так, чтобы для нее оставалось неизменным произведение расстояний до каждой из взятых точек. Получим Кривую, форма которой будет зависеть от того, как расположены точки F 1 , F 2 ,…, F n друг относительно друга и какова величина неизменного произведения. Кривая эта называется лемнискатой с n фокусами.

Выше мы рассматривали лемнискаты с двумя фокусами. Беря разное число фокусов, располагая их по-разному и назначая ту или иную величину для произведения расстояний, можно получать лемнискаты самых причудливых очертаний. Будем вести острие карандаша из некоторой точки А, не отрывая от бумаги, так, чтобы оно в конце вернулось в исходную точку А. Тогда оно опишет некоторую кривую; мы потребуем только, чтобы эта кривая нигде не пересекала

Рис. 11

самое себя. Очевидно, что таким путем могут получиться кривые, имеющие, например, очертания человеческой головы или птицы (рис. 11). Оказывается, что, имея такую произвольную кривую, можно так подобрать число п и расположение фокусов

F 1 , F 2 ,…, F n

и назначить такую величину для неизменного произведения расстояний

МF 1 МF 2 … МF n = p

что соответствующая лемниската на глаз не будет отличаться от этой кривой. Иными словами, возможные отклонения точки М, описывающей лемнискату, от нарисованной кривой - не будут превосходить ширину карандашного штриха (карандаш можно заранее отточить как угодно хорошо так, что штрих будет очень узким). Этот замечательный факт, говорящий о необычайном разнообразии н богатстве форм лемнискат с многими фокусами, доказывается совершенно строго, нo очень сложно, при помощи высшей математики.

Улитка Паскаля

Геометрическое место точек М и M", расположенных на прямых пучка (центр которого О лежит на окружности радиуса R) на расстоянии а по обе стороны от точки Р пересечения прямых с окружностью; т. о., PM = PM" = а. уравнение в прямоугольных координатах: (x2 + y2 - 2Rx)2 - а2(х2 + y2) = 0, в полярных координатах: r = 2R cos j + а. При а = 2R петля стягивается в точку, в этом случае улитка Паскаля превращается в кардиоиду. Название по имени французского учёного Б. Паскаля (1588-1651), впервые изучавшего её.

Циклоидальные кривые

Представим, что некоторая кривая катится без скольжения по другой кривой; какая либо точка, неизменно связанная с первой кривой, будет описывать при этом новую кривую. Так можно представить себе эллипс, катящийся по другому эллипсу, и исследовать линию, по которой будет перемещаться его центр, или определить траекторию фокуса параболы, катящейся по прямой, и т.д.

Среди кривых, образуемых указанным способом, выделяются кривые, являющиеся траекториями точки, неизменно связанной скругом, который катится без скольжения по другому кругу. Получаемые при этом линии называются циклоидальными.

При образовании циклоидальных кривых вычерчивающая точка отстоит от центра производящего (подвижного) круга на определенном расстоянии. В частном случае она находится на окружности производящего круга. При этом условии получаемые кривые подразделяются на эпициклоиды и гипоциклоиды в зависимости от того, располагается ли производящий круг с наружной или с внутренней стороны неподвижного круга.

К алгебраическим кривым относятся такие известные кривые, как кардиоида, астроида, рассмотрим эти кривые.

Кардиоида

1. Уравнение . Кардиоиду можно определить как траекторию точки, лежащей на окружности круга радиуса r, который катится по окружности неподвижного круга с таким же радиусом. Она будет представлять собой, таким образом, эпициклоиду с модулем m, равным 1.

Это обстоятельство позволяет сразу же записать параметрические уравнения кардиоиды, заменяя в ранее приведенных параметрических уравнениях эпициклоид модуль m единицей. Будем иметь:

Чтобы получить полярное уравнение кардиоиды, удобно принять за полюс точку А (рис. 13), а полярную ось направить по оси абсцисс. Так как четырехугольник AOO 1 M будет равнобедренной трапецией, то полярный угол точки М окажется равным углу поворота производящего круга, т.е. параметру t. Учитывая это обстоятельство, заменим во втором уравнении системы (1) у через sin t. Сокращая полученное таким образом равенство на sin t, получим полярное уравнение кардиоиды

Рис. 13

По виду этого уравнения

можно заключить, что кардиоида является одной из улиток Паскаля. Она может быть определена, следовательно, как конхоида круга.

Переводя уравнение (2) в прямоугольную систему координат, получим:

Из этого уравнения следует, что кардиоида является алгебраической кривой 4-го порядка.

2. Свойства. Прежде всего, поскольку кардиоида является эпициклоидой с m=1, на нее можно перенести все свойства рассмотренных нами в предыдущем параграфе эпициклоид.

Вот эти свойства и характеристики.

1. Касательная в произвольной точке кардиоиды проходит через точку окружности производящего круга, диаметрально противоположную точке касания кругов, а нормаль - через точку их касания.

2. Угол, составляемый касательной к кардиоиде с радиусом-вектором точки касания, равен половине угла, образуемого этим радиусом-вектором с полярной осью. Действительно

Из этого соотношения непосредственно вытекает, что угол, составляемый касательной к кардиоиде с осью абсцисс, равняется (как внешний угол треугольника AMN Рис. 14). Располагая формулой можно доказать, что касательные к кардиоиде, проведенные в концах хорды, проходящей через полюс, взаимно перпендикулярны.

Действительно, так как

Рис. 14

Заметим еще, что геометрическое место точек пересечения этих касательных есть окружность Действительно, уравнение первой касательной на основании уравнений (1) кардиоиды, будет иметь вид

а второй касательной Исключая из этих уравнений параметр, получим уравнение указанной окружности.

3. Радиус кривизны в произвольной точке кардиоиды определится по формуле

Можно показать также, что радиус кривизны равняется 2/3 полярной нормали N в заданной точке.

Действительно, откуда на основании (4) получаем Соотношение это может быть использовано для построения центра кривизны кардиоиды.

4. Эволюта кардиоиды, согласно общему свойству эволют эпициклоид, будет также кардиоидой, подобной данной, с коэффициентом подобия, равным 1/3, и повернутой относительно данной на угол 180°.

5. Длина дуги кардиоиды от точки А до произвольной точки М определится по формуле

Если длину дуги отсчитывать от точки А 1 , диаметрально противоположной точке А, то формула для определения длины дуги может быть записана в виде

6. Натуральное уравнение кардиоиды получится, если из равенств (4) и (6) исключить параметр. Оно будет иметь вид

7. Площадь, ограниченная кардиоидой, определится по формуле

и, как видно, равна ушестеренной площади производящего круга.

Длина всей кардиоиды определится по формуле

и, как видно, равна восьми диаметрам производящего круга. Объем тела, полученного от вращения кардиоиды вокруг ее оси, равен

Поверхность тела, полученного от вращения кардиоиды вокруг ее оси, равняется

Мы видели, что кардиоида органически связана с окружностью. Она является конхоидой круга и эпициклоидой. Она имеет с окружностью и иной характер родства - кардиоида является подэрой окружности относительно точки, принадлежащей этой окружности.

Рис. 15

Действительно, пусть ОМ есть перпендикуляр, опущенный на касательную к окружности с радиусом, равным 2r, проведенную в точке N.

Так как ОМ = OB + ВМ, или == 2r cos + 2r, то геометрическим местом точек М будет кардиоида с уравнением = 2r (1 + cos)

Заметим в заключение, что кардиоида относится также к семейству синусоидальных спиралей, и отдельные свойства ее повторяют общие свойства этих кривых. Из этих свойств следует, в частности, что инверсия кардиоиды, относительно точки возврата дает параболу.

Астроида

1. Свойства. Астроида является частным случаем гипоциклоид, а именно, гипоциклоидой с модулем m, равным 1/4. Она представляет собой, следовательно, траекторию точки, лежащей на окружности круга радиуса r, который катится по внутренней стороне другого, неподвижного круга, радиус R которого в четыре раза больше.

Параметрические уравнения астроиды можно получить, полагая в уравнениях гипоциклоиды, m=1/4. Вот эти уравнения:

Рис. 16

где t, как и ранее, угол поворота производящего круга (рис. 16)

Исключая из уравнений (1) параметр t, получим:

Из уравнения (2) следует, что астроида является алгебраической кривой 6-го порядка.

Параметрические уравнения (1) астроиды можно привести к виду

Исключая из этих уравнений параметр t, получим часто употребляемый вид уравнения астроиды

Полагая в ранее выведенных общих соотношениях для циклоидальных кривых модуль

m = -1/4, получим соответствующие соотношения для астроиды:

1) радиус кривизны в произвольной точке астроиды определяется по формуле

2) длина дуги астроиды от точки А до произвольной точки M(t) определится по формуле

длина одной ветви равна а длина всей кривой 6R;

3) для получения натурального уравнения астроиды заметим предварительно, что если началом отсчета длины дуги полагать не точку А, для которой t = 0, а точку, для которой t = , то длина дуги определится формулой

исключая параметр t из уравнений (5) и (6), получим натуральное уравнение астроиды

4) эволюта астроиды есть также астроида, подобная данной, с коэффициентом подобия, равным 2, повернутая относительно данной на угол /4 (рис. 16)

5) площадь, ограниченная всей астроидой, равна объем тела, полученного от вращения астроиды, равняется 32/105 R 3

поверхность тела, образованного вращением астроиды, равна

Обратимся теперь к рассмотрению некоторых частных свойств астроиды.

Астроида является огибающей отрезка постоянной длины, концы. которого скользят по двум взаимно перпендикулярным прямым.

Принимаем эти прямые за оси координат и, обозначая угол наклона скользящего отрезка ND=R через (рис. 4), будем иметь уравнение прямой ND в виде

Дифференцируя это уравнение по параметру, получим:

Исключая из последнего уравнения и уравнения (7) параметр, будем иметь уравнение огибающей в виде т.е. астроиду.

Практически перемещение отрезка ND можно осуществить с помощью так называемых кардановых кругов. Один из этих кругов с радиусом R неподвижен, а другой, с радиусом r, в два раза меньшим, катится по внутренней стороне неподвижного круга. Любые две диаметрально противоположные точки N и D катящегося круга будут перемещаться по двум взаимно перпендикулярным диаметрам Ох и Оу неподвижного круга. Ясно, что огибающей диаметра катящегося круга и будет астроида.

Рис. 17

Рис. 18

Рассмотренный способ образования астроиды можно истолковать также следующим образом. Прямоугольник ODCN, две стороны которого лежат на двух взаимно перпендикулярных прямых, деформируется так, что диагональ его сохраняет длину, равную R, огибающая диагонали и будет астроидой. Так как при этом перпендикуляр, опущенный из вершины С на диагональ DN, служит нормалью к огибающей, то астроида представляет собой геометрическое место оснований перпендикуляров, опущенных из вершины С прямоугольника на его диагональ.

При эти уравнения выражают рассмотренную ранее прямую астроиду.

    - (от греч. astron звезда и eidos вид) плоская кривая, описываемая точкой окружности, которая касается изнутри неподвижной окружности вчетверо большего радиуса и катится по ней без скольжения. Принадлежит к гипоциклоидам. Астроида алгебраическая… … Большой Энциклопедический словарь

    Сущ., кол во синонимов: 1 кривая (56) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    - (от греч. ástron звезда и éidos вид), плоская кривая, описываемая точкой окружности, которая касается изнутри неподвижной окружности вчетверо большего радиуса и катится по ней без скольжения. Принадлежит к гипоциклоидам. Астроида … … Энциклопедический словарь

    - (астро... гр. eidos вид) мат. плоская кривая, описываемая точкой окружности, катящейся без скольжения по внутренней стороне другой, неподвижной окружности с радиусом, вчетверо большим, чем у первой; имеет вид четырехконечной звезды. Новый словарьСловарь иностранных слов русского языка

    Плоская алгебраич. кривая ti ro порядка, к рая описывается точкой Мокружности радиуса r, катящейся по внутренней стороне окружности радиуса R=4r; гипоциклоида с модулем r=4. Уравнение в декартовых прямоугольных координатах: параметрич. уравнения … Математическая энциклопедия

Кривая или линия - геометрическое понятие, определяемое в разных разделах различно.

КРИВАЯ (линия), след, оставленный движущейся точкой или телом. Обычно кривую представляют лишь как плавно изгибающуюся линию, вроде параболы или окружности. Но математическое понятие кривой охватывает и прямую, и фигуры, составленные из отрезков прямых, например, треугольник или квадрат.

Кривые можно разделить на плоские и пространственные. Плоская кривая, например, парабола или прямая, образуется при пересечении двух плоскостей или плоскости и тела и поэтому целиком лежит в одной плоскости. Пространственную кривую, например, винтовую линию, имеющую форму спиральной пружины, нельзя получить как пересечение какой-нибудь поверхности или тела с плоскостью, и она не лежит в одной плоскости. Кривые можно также подразделить на замкнутые и открытые. Замкнутая кривая, например квадрат или окружность, не имеет концов, т.е. движущаяся точка, порождающая такую кривую, периодически повторяет свой путь.

Кривая есть геометрическое место, или множество, точек, удовлетворяющих некоторому математическому условию или уравнению.

Например, окружность – это геометрическое место точек плоскости, равноудаленных от данной точки. Кривые, определяемые алгебраическими уравнениями, называются алгебраическими кривыми.

Например, уравнение прямой y = mx + b, где m – угловой коэффициент, а b – отрезок, отсекаемый на оси y, – алгебраическое.

Кривые, уравнения которых содержат трансцендентные функции, например, логарифмы или тригонометрические функции, называются трансцендентными кривыми.

Например, y = log x и y = tg x – уравнения трансцендентных кривых.

Форму алгебраической кривой можно определить по степени ее уравнения, которая совпадает с наивысшей степенью членов уравнения.

    Если уравнение первой степени, например Ax + By + C = 0, то кривая имеет форму прямой.

    Если уравнение второй степени, например,

Ax 2 + By + C = 0 или Ax 2 + By 2 + C = 0, то кривая квадратична, т.е. представляет собой одно из конических сечений; к числу таких кривых относятся параболы, гиперболы, эллипсы и окружности.

Перечислим общие формы уравнений конических сечений:

    x 2 + y 2 = r 2 - окружность,

    x 2 /a 2 + y 2 /b 2 = 1 - эллипс,

    y = ax 2 - парабола,

    x 2 /a 2 – y 2 /b 2 = 1 - гипербола.

Кривые, соответствующие уравнениям третьей, четвертой, пятой, шестой и т.д. степеней, называются кривыми третьего, четвертого, пятого, шестого и т.д. порядка. Как правило, чем выше степень уравнения, тем больше изгибов будет у открытой кривой.

Многие сложные кривые получили специальные наименования.

    Циклоидой называется плоская кривая, описываемая фиксированной точкой окружности, катящейся по прямой, называемой образующей циклоиды; циклоида состоит из серии повторяющихся дуг.

    Эпициклоида – это плоская кривая, описываемая фиксированной точкой окружности, катящейся по другой неподвижной окружности вне ее.

    Гипоциклоидой называется плоская кривая, описываемая фиксированной точкой окружности, катящейся изнутри по неподвижной окружности.

    Спиралью называется плоская кривая, которая виток за витком раскручивается от неподвижной точки (или накручивается на нее).

Математики занимались изучением свойств кривых с глубокой древности, и названия многих необычных кривых связаны с именами тех, кто впервые их исследовал. Таковы, например, спираль Архимеда, локон Аньези, циссоида Диоклеса, кохоида Никомеда и лемниската Бернулли.

В рамках элементарной геометрии понятие кривой не получает отчётливой формулировки и иногда определяется как «длина без ширины» или как «граница фигуры». По существу в элементарной геометрии изучение кривых сводится к рассмотрению примеров (, , , и др.). Не располагая общими методами, элементарная геометрия довольно глубоко проникла в изучение свойств конкретных кривых (, некоторые и также ), применяя в каждом случае специальные приёмы.

Чаще всего кривая определяется как непрерывное отображение из отрезка в :

При этом, кривые могут быть различными, даже если их совпадают. Такие кривые называют параметризованными кривыми или, если [ a , b ] = , путями .

Иногда кривая определяется с точностью до , то есть с точностью до минимального отношения эквивалентности такого что параметрические кривые

эквивалентны, если существует непрерывная (иногда неубывающая) h из отрезка [a 1 ,b 1 ] на отрезок [a 2 ,b 2 ], такая что

Определяемые этим отношением называются или просто кривыми.

Аналитические определения

В курсах аналитической геометрии доказывается, что среди линий, записываемых в декартовых прямоугольных (или даже в общих аффинных) координатах общим уравнением второй степени

Ax 2 + 2Bxy + Cy 2 + 2Dx + 2Ey + F = 0

(где хотя бы один из коэффициентов A, B, C отличен от нуля) встречаются лишь следующие восемь типов линий:

а) эллипс;

б) гипербола;

в) парабола (невырожденные кривые второго порядка);

г) пара пересекающихся прямых;

д) пара параллельных прямых;

е) пара совпавших прямых (одна прямая);

ж) одна точка (вырожденные линии второго порядка);

з) "линия", совсем не содержащая точек.

Обратно, любая линия каждого из указанных восьми типов записывается в декартовых прямоугольных координатах некоторым уравнением второго порядка. (В курсах аналитической геометрии обычно говорят о девяти (а не о восьми) типах конических сечений, поскольку там различают "мнимый эллипс" и "пару мнимых параллельных прямых", - геометрически эти "линии" одинаковы, поскольку обе не содержат ни одной точки, но аналитически они записываются разными уравнениями.) Поэтому (вырожденные и невырожденные) конические сечения можно определить также как линии второго порядка.

В кривая на плоскости определяется как множество точек, координаты которых удовлетворяют уравнению F ( x , y ) = 0 . При этом на функцию F накладываются ограничения, которые гарантируют, что это уравнение имеет бесконечное множество несовпадающих решений и

это множество решений не заполняет «куска плоскости».

Алгебраические кривые

Важный класс кривых составляют те, для которых функция F ( x , y ) есть от двух переменных. В этом случае кривая, определяемая уравнением F ( x , y ) = 0 , называется .

    Алгебраические кривые, задаваемые уравнением 1-й степени, суть .

    Уравнение 2-й степени, имеющее бесконечное множество решений, определяет , то есть вырожденные и невырожденные .

    Примеры кривых, задаваемых уравнениями 3-ей степени: , .

    Примеры кривых 4-ой степени: и .

    Пример кривой 6-ой степени: .

    Пример кривой, определяемой уравнением чётной степени: (многофокусная) .

Алгебраические кривые, определяемые уравнениями высших степеней, рассматриваются в . При этом большую стройность приобретает их теория, если рассмотрение ведется на . В этом случае алгебраическая кривая определяется уравнением вида

F ( z 1 , z 2 , z 3 ) = 0 ,

где F - многочлен трех переменных, являющихся точек.

Типы кривых

Плоская кривая - кривая, все точки которой лежат в одной плоскости.

(простая линия или жорданова дуга, также контур) - множество точек плоскости или пространства, находящихся во взаимно однозначном и взаимно непрерывном соответствии с отрезками прямой.

Путь - отрезка в .

аналитические кривые, не являющиеся алгебраическими. Более точно - кривые, которые можно задать через линию уровня аналитической функции (или, в многомерном случае, системы функций).

    Синусоида,

    Циклоида,

    Спираль Архимеда,

    Трактриса,

    Цепная линия,

    Гиперболическая спираль и др.

  1. Способы задания кривых:

    аналитический – кривая задана математическим уравнением;

    графический – кривая задана визуально на носителе графической информации;

    табличный – кривая задана координатами последовательного ряда точек.

    параметрический (наиболее общий способ задать уравнение кривой) :

где - гладкие функции параметра t , причем

(x ") 2 + (y ") 2 + (z ") 2 > 0 (условие регулярности).

    Часто удобно использовать инвариантную и компактную запись уравнения кривой с помощью :

где в левой части стоит точек кривой, а правая определяет его зависимость от некоторого параметра t . Раскрыв эту запись в координатах, мы получаем формулу (1).

  1. Циклоида.

История исследования циклоиды связана с именами таких великих учёных, философов, математиков и физиков, как Аристотель, Птолемей, Галилей, Гюйгенс, Торричелли и др.

Циклоида (от κυκλοειδής - круглый) - , которую можно определить как траекторию точки, лежащей на границе круга, катящегося без скольжения по прямой. Эту окружность называют порождающей.

Одним из древнейших способов образования кривых является кинематический способ, при котором кривая получается как траектория движения точки. Кривая, которая получается как траектория движения точки, закрепленной на окружности, катящейся без скольжения по прямой, по окруж­ности или другой кривой, называется циклоидальной, что в переводе с греческого языка означает кругообразная, напоминающая о круге.

Рассмотрим сначала случай, когда окружность катится по прямой. Кривая, которую описывает точка, закрепленная на окружности, катящейся без скольжения по прямой линии, называется циклоидой.

Пусть окружность радиуса R катится по прямой а. С – точка, закрепленная на окружности, в начальный момент времени находящаяся в по­ложении А (рис. 1). Отложим на прямой а отрезок АВ, равный длине окружности, т.е. АВ = 2 π R. Разделим этот отрезок на 8 равных частей точками А1, А2, ..., А8 = В.

Ясно, что когда окружность, катясь по прямой а, сделает один оборот, т.е. повернется на 360, то она займет положение (8), а точка С переместится из положения А в положение В.

Если окружность сделает половину полного оборота, т.е. повернется на 180, то она займет положение (4), а точка С переместится в самое верхнее положение С4.

Если окружность повернется на угол 45, то окружность переместится в положение (1), а точка С переместится в положение С1.

На рисунке 1 показаны также другие точки циклоиды, соответствующие оставшимся углам поворота окружности, кратным 45.

Соединяя плавной кривой построенные точки, получим участок циклоиды, соответствующий одному полному обороту окружности. При следующих оборотах будут получаться такие же участки, т.е. циклоида будет состоять из периодически повторяющегося участка, называемого аркой циклоиды.

Обратим внимание на положение касательной к циклоиде (рис. 2). Если велосипедист едет по мокрой дороге, то оторвавшиеся от колеса капли будут лететь по касательной к циклоиде и при отсутствии щитков могут забрызгать спину велосипедиста.

Первым, кто стал изучать циклоиду, был Галилео Галилей (1564 – 1642). Он же придумал и ее название.

Свойства циклоиды:


Циклоида обладает целым рядом замечательных свойств. Упомянем о некоторых из них.

Свойство 1. (Ледяная гора.) В 1696 году И.Бернулли поставил задачу о нахождении кривой наискорейшего спуска, или, иначе говоря, задачу о том, какова должна быть форма ледяной горки, чтобы, скатываясь по ней, совершить путь из начальной точки А в конечную точку В за кратчайшее время (рис. 3, а). Искомую кривую назвали "брахистохроной", т.е. кривой кратчайшего времени.

Ясно, что кратчайшим путем из точки A в точку B является отрезок AB. Однако при таком прямолинейном движении скорость набирается медленно и затраченное на спуск время оказывается большим (рис. 3, б).

Скорость набирается тем быстрее, чем круче спуск. Однако при крутом спуске удлиняется путь по кривой и тем самым увеличивается время его прохождения.

Среди математиков, решавших эту задачу, были: Г.Лейбниц, И.Ньютон, Г.Лопиталь и Я.Бернулли. Они доказали, что искомой кривой является перевернутая циклоида (рис. 3, а). Методы, развитые этими учеными при решении задачи о брахистохроне, положили начало новому направлению математики - вариационному исчислению.

Свойство 2. (Часы с маятником.) Часы с обычным маятником не могут идти точно, поскольку период колебаний маятника зависит от его амплитуды: чем больше амплитуда, тем больше период. Голландский ученый Христиан Гюйгенс (1629 – 1695) задался вопросом, по какой кривой должен двигаться шарик на нитке маятника, чтобы период его колебаний не зависел от амплитуды. Заметим, что в обычном маятнике кривой, по которой движется шарик, является окружность (рис. 4).

Искомой кривой оказалась перевернутая циклоида. Если, например, в форме перевернутой циклоиды изготовить желоб и пустить по нему шарик, то период движения шарика под действием силы тяжести не будет зависеть от начального его положения и от амплитуды (рис. 5). За это свойство циклоиду называют также "таутохрона" – кривая равных времен.

Гюйгенс изготовил две деревянные дощечки с краями в форме циклоиды, ограничивающие движение нити слева и справа (рис. 6). При этом сам шарик будет двигаться по перевернутой циклоиде и, таким образом, период его колебаний не будет зависеть от амплитуды.

Из этого свойства циклоиды, в частности следует, что независимо от того, с какого места ледяной горки в форме перевернутой циклоиды мы начнем спуск, на весь путь до конечной точки мы затратим одно и то же время.

Уравнение циклоиды

1.Уравнение циклоиды удобно записывать через α – угол поворота окружности, выраженный в радианах, заметим, что α также равняется пути, пройденному производящей окружностью по прямой.

x=rα r sin α

y=r – r cos α

2.Примем горизонтальную ось координат в качестве прямой, по которой катится производящая окружность радиуса r .

Циклоида описывается параметрическими уравнениями

x = rt r sin t ,

y = r r cos t .

Уравнение в :

Циклоида может быть получена как решение дифференциального уравнения:

Из истории о циклоиде

Первым из учёных обратил внимание на циклоиду в , но серьёзное исследование этой кривой началось только в .

Первым, кто стал изучать циклоиду, был Галилео Галилей (1564-1642) – знаменитый итальянский астроном, физик и просветитель. Он же придумал название «циклоида», что значит: «напоминающая о круге». Сам Галилей о циклоиде ничего не писал, но о его работах в этом направлении упоминают ученики и последователи Галилея: Вивиани, Торичелли и другие. Торичелли – известный физик, изобретатель барометра – уделял немало времени и математике. В эпоху Возрождения не было узких ученых-специалистов. Талантливый человек занимался и философией, и физикой, и математикой и всюду получал интересные результаты и делал крупные открытия. Немного позже итальянцев за циклоиду принялись французы, назвавшие её «рулеттой» или «трохоидой». В 1634 году Роберваль – изобретатель известной системы весов системы весов – вычислил площадь, ограниченную аркой циклоиды и её основанием. Содержательное исследование циклоиды провёл современник Галилея . Среди , то есть кривых, уравнение которых не может быть записано в виде от x , y , циклоида - первая из исследуемых.

Писал о циклоиде:

Рулетта является линией столь обычной, что после прямой и окружности нет более часто встречающейся линии; она так часто вычерчивается перед глазами каждого, что надо удивляться тому, как не рассмотрели её древние… ибо это не что иное, как путь, описываемый в воздухе гвоздём колеса.

Новая кривая быстро завоевала популярность и подверглась глубокому анализу, в котором участвовали , , Ньютон, , братья Бернулли и другие корифеи науки XVII-XVIII веков. На циклоиде активно оттачивались методы появившегося в те годы . Тот факт, что аналитическое исследование циклоиды оказалось столь же успешным, как и анализ алгебраических кривых, произвёл большое впечатление и стал важным аргументом в пользу «уравнения в правах» алгебраических и трансцендентных кривых. Эпициклоида

Некоторые виды циклоид

Эпициклоида - траектория точки А, лежащей на окружности диаметра D, которая катится без скольжения по направляющей окружности радиуса R (касание внешнее).

Построение эпициклоиды выполняется в следующей последовательности:

Из центра 0 проводят вспомогательную дугу радиусом равным 000=R+r;

Из точек 01, 02, ...012, как из центров, проводят окружности радиуса r до пересечения с вспомогательными дугами в точках А1, А2, ... А12, которые принадлежат эпициклоиде.

Гипоциклоида

Гипоциклоида - траектория точки А, лежащей на окружности диаметра D, которая катится без скольжения по направляющей окружности радиуса R (касание внутреннее).

Построение гипоциклоиды выполняется в следующей последовательности:

Производящую окружность радиуса r и направляющую окружность радиуса R проводят так, чтобы они касались в точке А;

Производящую окружность делят на 12 равных частей, получают точки 1, 2, ... 12;

Из центра 0 проводят вспомогательную дугу радиусом равным 000=R-r;

Центральный угол a определяют по формуле a =360r/R.

Делят дугу направляющей окружности, ограниченную углом a, на 12 равных частей, получают точки 11, 21, ...121;

Из центра 0 через точки 11, 21, ...121 проводят прямые до пересечения с вспомогательной дугой в точках 01, 02, ...012;

Из центра 0 проводят вспомогательные дуги через точки деления 1, 2, ... 12 производящей окружности;

Из точек 01, 02, ...012, как из центров, проводят окружности радиуса r до пересечения с вспомогательными дугами в точках А1, А2, ... А12, которые принадлежат гипоциклоиде.

  1. Кардиоида.

Кардиоида ( καρδία - сердце, Кардиоида является частным случаем Термин «кардиоида» введен Кастиллоном в 1741 году.

Если взять окружность и в качестве полюса точку на ней, то кардиоиду получим только в том случае, если откладывать отрезки, равные диаметру окружности. При других величинах откладываемых отрезков конхоидами будут удлиненные или укороченные кардиоиды. Эти удлиненные и укороченные кардиоиды называются иначе улитками Паскаля.

Кардиоида имеет различные применения в технике. В форме кардиоиды делают эксцентрики, кулачки у машин. Ею пользуются иногда при вычерчивании зубчатых колес. Кроме того, она применяется в оптической технике.

Свойства кардиоиды

Кардиоида - В М на подвижной окружности будет описывать замкнутую траекторию. Эта плоская кривая называется кардиоидой.

2)Кардиоиду можно получить и другим способом. Отметим на окружности точку О и проведем из нее луч. Если от точки А пересечения этого луча с окружностью отложить отрезок АМ, по длине равный диаметру окружности, и луч вращать вокруг точки О , то точка М будет двигаться по кардиоиде.

3)Кардиоида может быть также представлена как кривая, касающаяся всех окружностей, имеющих центры на данной окружности и проходящих через ее фиксированную точку. Когда построены несколько окружностей, кардиоида оказывается построенной как бы сама собой.

4)Есть еще столь же изящный, сколь, неожиданный способ увидеть кардиоиду. На рисунке можно увидеть точечный источник света на окружности. После того как лучи света отразятся в первый раз от окружности, они идут по касательной к кардиоиде. Представьте себе теперь, что окружность – это края чашки, в одной точке ее отражается яркая лампочка. В чашку налит черный кофе, позволяющий увидеть яркие отраженные лучи. Кардиоида в результате оказывается выделенной лучами света.

  1. Астроида.

Астроида (от греч. astron - звезда и eidos - вид), плоская кривая, описываемая точкой окружности, которая касается изнутри неподвижной окружности вчетверо большего радиуса и катится по ней без скольжения. Принадлежит к гипоциклоидам. Астроида - алгебраическая кривая 6-го порядка.

Астроида.

Длина всей астроиды равна шести радиусам неподвижного круга, а площадь, ею ограниченная,- трем восьмым неподвижного круга.

Отрезок касательной к астроиде, заключенный между двумя взаимно перпендикулярными радиусами неподвижного круга, проведенными в острия астроиды, равен радиусу неподвижного круга, независимо от того, как была выбрана точка.

Свойства астроиды

Имеются четыре каспа .

Длина дуги от точки с 0 до огибающей

семейства отрезков постоянной длины, концы которых расположены на двух взаимно перпендикулярных прямых.

Астроида является 6-го порядка.

Уравнения астроиды

Уравнение в декартовых прямоугольных координатах: | x | 2 / 3 + | y | 2 / 3 = R 2 / 3 параметрическое уравнение: x = Rcos 3 t y = Rsin 3 t

Способ построения астроиды

Чертим две взаимно перпендикулярные прямые и проводим ряд отрезков длиною R , концы которых лежат на этих прямых. На рисунке изображено 12 таких отрезков (включая отрезки самих взаимно перпендикулярных прямых). Чем больше проведем отрезков, тем точнее получим кривую. Построим теперь огибающую всех этих отрезков. Этой огибающей будет астроида.


  1. Заключение

В работе приведены примеры задач с различными видами кривых, определяемых различными уравнениями или удовлетворяющих некоторому математическому условию. В частности циклоидальные кривые, способы их задания, различные способы построения, свойства этих кривых.

Свойства циклоидальных кривых очень часто используется в механике в зубчатых передачах, что существенно повышает прочность деталей в механизмах.



Поделиться